109 resultados para Vinyl Chloride
Resumo:
The temperature dependence of the chlorine-35 n.q.r. in the mercuric chloride-4-picoline N-oxide complex has been studied from 77 K to room temperature, and the results are used to assign the observed frequencies to terminal and bridging chlorines.
Resumo:
A pure sample of nitrosyl chloride has been prepared either by reaction of phosphorus trichloride with concentrated nitric acid or by reaction of phosphorus trichloride with sodium nitrate in presence of water. The nitrosyl chloride gas has been characterized by i.r. spectral data and elemental analysis.
Resumo:
Several samples of poly(vinyl formal) having the same vinyl alcohol content (8–9%) but varying contents of vinyl acetate (6–22%) and vinyl formol (70–85%) were prepared and subjected to thermogravimetric analysis, in air and nitrogen atmospheres, employing both isothermal and dynamic methods. Kinetic parameters determined from both the isothermal and dynamic TGA data are compared. The activation energy is seen to be largely dependent on the degree of conversion, implying a complex degradation reaction. The activation energy is also much less for degradation in air than in nitrogen, which can be explained by a reaction with oxygen-producing structures favoring degradation. The activation energy is less sensitive to variation in polymer composition for degradation in air than in nitrogen. Thus, in the dynamic process, the activation energy value decreases (from 36 to 23 kcal/mole) with increasing acetate content (from 6 to 22%) in nitrogen atmosphere, while in air the activation energy value increases only moderately (from 21 to 27 kcal/mole) with increasing acetate content (from 6 to 22%). The order of reaction is nearly unity, irrespective of the composition of the polymer, both in air and nitrogen.
Resumo:
Several samples of poly(vinyl formal) having the same vinyl alcohol content (8–9%) but varying contents of vinyl acetate (6–22%) and vinyl formol (70–85%) were prepared and subjected to thermogravimetric analysis, in air and nitrogen atmospheres, employing both isothermal and dynamic methods. Kinetic parameters determined from both the isothermal and dynamic TGA data are compared. The activation energy is seen to be largely dependent on the degree of conversion, implying a complex degradation reaction. The activation energy is also much less for degradation in air than in nitrogen, which can be explained by a reaction with oxygen-producing structures favoring degradation. The activation energy is less sensitive to variation in polymer composition for degradation in air than in nitrogen. Thus, in the dynamic process, the activation energy value decreases (from 36 to 23 kcal/mole) with increasing acetate content (from 6 to 22%) in nitrogen atmosphere, while in air the activation energy value increases only moderately (from 21 to 27 kcal/mole) with increasing acetate content (from 6 to 22%). The order of reaction is nearly unity, irrespective of the composition of the polymer, both in air and nitrogen.
Resumo:
Reactions of the bis(3,5-dimethylpyrazolyl)cyclotriphosphazene derivatives gem-N3P3(MeNCH(2)CH(2)O)(2)(dmp)(2) (1) and nongeminal cis-N3P3(OPh)(4)(dmp)(2) (2) with PdCl2 afford complexes of the type [PdCl2.(L)] (L = 1 or 2). In these complexes, the phosphazenes act as bidentate NN-donor ligands with the two pyrazolyl pyridinic nitrogen atoms bonded to the metal, thus forming a six- and an eight-membered chelate ring, respectively. The structures of 2 and [PdCl2.(2)] (4) have been confirmed by single-crystal X-ray diffraction. Crystal data for 2: a = 16.759(2) Angstrom, b = 10.788(3) Angstrom, c = 19.635(9) Angstrom, beta = 101.61(3)degrees, P2(1/c), Z = 4, R = 0.038 for 4688 reflections with F > 5 sigma(F). Crystal data for 4: a = 9.701(3) Angstrom, b = 24.853(4) Angstrom, c = 15.794(4) Angstrom, beta = 101.46(2)degrees, P2(1/n), Z = 4, R = 0.030 for 5416 reflections with F > 5 sigma(F).
Resumo:
Poly(ethylene-co-vinyl acetate) (EVA) films were irradiated with a 1.2MeV electron beam at varied doses over the range 0-270kGy in order to investigate the modifications induced in its optical, electrical and thermal properties. It was observed that optical band gap and activation energy of EVA films decreased upon electron irradiation, whereas the transition dipole moment, oscillator strength and number of carbon atoms per cluster were found to increase upon irradiation. Further, the dielectric constant, the dielectric loss, and the ac conductivity of EVA films were found to increase with an increase in the dose of electron radiation. The result further showed that the thermal stability of EVA film samples increased upon electron irradiation.
Resumo:
The geometries of alpha- and beta-silyl substituted vinyl radicals and of alpha,beta-disilylvinyl radical have been optimised with the STO-3G and the STO-3G* basis sets. The relative stabilities of various conformers have been determined at the UMP2/6-31G* level. The stabilisation of vinyl radicals through alpha-silyl substitution is larger than that due to corresponding alkyl groups. The presence of an alpha-silyl group also leads to a tendency towards linearisation of the vinyl radical centre and a corresponding reduction in the inversion barrier. In marked contrast, the beta-silyl effect is negligible. The geometric, conformational and energetic consequences are insignificant. Overall, the silyl substituent effect at vinyl radicals is very different from that computed earlier for the vinyl cations, but qualitatively similar to that found in carbanions.
Resumo:
The reaction of the amino spirocyclic cyclotriphosphazene N3P3(NMe2)4(NHCH2CH2CH2NH) (2) with palladium chloride gives the stable chelate complex [PdCl2.2] (4). An X-ray crystallographic study reveals that one of the nitrogen atoms of the diaminoalkane moiety and an adjacent phosphazene ring nitrogen atom are bonded to the metal. An analogous reaction with the phosphazene N3P3(NMe2)4(NHCH2CH2NH) (1) gives initially a similar complex which undergoes facile hydrolysis to give the novel monometallic and bimetallic complexes [PdCl2.HN3P3(O)(NMe2)4(NHCH2CH2NH2)] (5) and [PdCl{N3P3(NMe2)4(NCH2CH2NH2)}]2(O) (6), which have been structurally characterized; in the former, an (oxophosphazadienyl)ethylenediamine is chelated to the metal whereas, in the latter, an oxobridged bis(cyclotriphosphazene) acts as a hexadentate nitrogen donor ligand in its dianionic form. Crystal data for 4 : a = 14.137(1) angstrom, b = 8.3332(5) angstrom, c = 19.205(2) angstrom, beta = 96.108(7)degrees, P2(1)/c, Z = 4, R = 0.027 with 3090 reflections (F > 5sigma(F)). Crystal data for 5 : a = 8.368(2) angstrom, b = 16.841(4) A, c = 16.092(5) angstrom, beta = 98.31(2)degrees, P2(1)/n, Z = 4, R = 0.049 with 3519 reflections (F > 5sigma(F)). Crystal data for 6 : a = 22.455(6) angstrom, b = 14.882(3) angstrom, c = 13.026(5) angstrom, 6 = 98.55(2)degrees, C2/c, Z = 4, R = 0.038 with 3023 reflections (F > 5sigma(F)).
Resumo:
We describe the use of poly(alpha-methylstyrene peroxide) (P alpha MSP), an alternating copolymer of alpha-methylstyrene and oxygen, as initiator for the radical polymerization of vinyl monomers. Thermal decomposition of P alpha MSP in 1,4-dioxane follows first-order kinetics with an activation energy (E(a)) of 34.6 kcal/mol. Polymerization of methyl methacrylate (MMA) and styrene using P alpha MSP as an initiator was carried out in the temperature range 60-90 degrees C. The kinetic order with respect to the initiator and the monomer was close to 0.5 and 1.0, respectively, for both monomers. The E(a) for the polymerization was 20.6 and 22.9 kcal/mol for MMA and styrene, respectively. The efficiency of P alpha MSP was found to be in the range 0.02-0.04. The low efficiency of P alpha MSP was explained in terms of the unimolecular decomposition of the alkoxy radicals which competes with primary radical initiation. The presence of peroxy segments in the main chain of PMMA and polystyrene was confirmed from spectroscopic and DSC studies. R(i)'/2I values for P alpha MSP compared to that of BPO at 80 degrees C indicate that P alpha MSP can be used as an effective high-temperature initiator.
Resumo:
The dynamics of poly(vinyl acetate) in toluene solution has been examined by C-13 and proton relaxation. C-13 spin-lattice relaxation time and nuclear Overhauser enhancement measurements were carried out as a function of temperature at 50.3 and 100.6 MHz. The spin-lattice relaxation times for backbone protons were measured at different temperatures at 200 MHz. The relaxation data have been analyzed using the Hall-Weber-Helfand (HWH) model, which describes backbone dynamics in terms of conformational transitions and the Dejean-Laupretre-Monnerie (DLM) model, which includes bond librations in addition to conformational transitions. The parameters obtained from the analysis of C-13 relaxation data were utilized to predict the proton relaxation data. The DLM model was found to be more successful in reproducing the experimental results. To study the influence of libration further, proton relaxation data for poly(vinyl acetate) over a wider range of temperature reported in the literature were analyzed by these two models. The DLM model could reproduce the experimental data at all temperatures whereas the HWH model was found to be successful only in accounting for the experimental data at high temperatures. The results demonstrate the importance of including the librational mode in the description of the backbone dynamics in polymers.
Resumo:
This article describes the first comprehensive study on the use of a vinyl polyperoxide, namely poly(styrene peroxide) (PSP), an equimolar alternating copolymer of oxygen and styrene, as a photoinitiator for free radical polymerization of vinyl monomers like styrene. The molecular weight, yield, structure and thermal stability of polystyrene (PS) thus obtained are compared with PS made using a simple peroxide like di-t-butyl peroxide. Interestingly, the PS prepared using PSP contained PSP segments attached to its backbone preferably at the chain ends. This PSP-PS-PSP was further used as a thermal macroinitiator for the preparation of another block copolymer PS-b-PMMA by reacting PSP-PS-PSP with methyl methacrylate (MMA). The mechanism of block copolymerization has been discussed. (C) 1996 John Wiley & Sons, Inc.
Resumo:
Poly(vinyl acetate peroxide) (PVACP) was prepared from vinyl acetate by free-radical-initiated oxidative polymerization. The polyperoxide was isolated and characterized by different spectroscopic methods. The extreme instability of PVACP was demonstrated by FTIR spectroscopy. The H-1- and C-13-NMR studies show the irregularities in the polyperoxide chain due to the cleavage reactions of the propagating peroxide radical. Thermal degradation studies using differential scanning calorimetry revealed that PVACP degrades at a lower temperature and the heat of degradation is in the same range as reported for other vinyl polyperoxides. (C) 1996 John Wiley & Sons, Inc.
Resumo:
The coefficient of thermal expansion is measured for irradiated Polyvinyl Chloride (PVC) from 10K to 340K. The samples of PVC are irradiated, up to 500 Mrad in steps of 100 Mrad, in air at room temperature by using Co gamma rays with a dose rate of 0.3 Mrad/h. The PVC is an amorphous sample which is confirmed by X-ray diffraction. The coefficient of thermal expansion is found to decrease with radiation dose from 10K to 110K and it increaseswith radiation dose from 110K to 340K. The results are explained on the basis of radiation induced degradation of the sample.