470 resultados para VAPOR-LIQUID-EQUILIBRIUM


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Colloidal systems with competing interactions are known to exhibit a range of dynamically arrested states because of the systems' inability to reach its underlying equilibrium state due to intrinsic frustration. Graphene oxide (GO) aqueous dispersions constitute a class of 2D-anisotropic colloids with competing interactions long-range electrostatic repulsion, originating from ionized groups located on the rim of the sheets, and weak dispersive attractive interactions originating from the unoxidized graphitic domains. We show here that aqueous dispersions of GO exhibit a range of arrested states, encompassing fluid, glass, and gels that coexist with liquid-crystalline order with increasing volume fraction. These states can be accessed by varying the relative magnitudes of the repulsive and attractive forces. This can be realized by changing the ionic strength of the medium. We observe at low salt concentrations, where long-range electrostatic repulsion dominates, the formation of a repulsive Wigner glass, while at high salt concentrations, when attractive forces dominate, the formation of gels exhibits a nematic to columnar liquid-crystalline transition. The present work highlights how the chemical structure of GO hydrophilic ionizable groups and hydrophobic graphitic domains coexisting on a single sheet gives rise to a rich and complex array of arrested states.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

When a binary liquid is confined by a strongly repulsive wall, the local density is depleted near the wall and an interface similar to that between the liquid and its vapor is formed. This analogy suggests that the composition of the binary liquid near this interface should exhibit spatial modulation similar to that near a liquid-vapor interface even if the interactions of the wall with the two components of the liquid are the same. The Guggenheim adsorption relation quantifies the concentrations of two components of a binary mixture near a liquid-vapor interface and qualitatively states that the majority (minority) component enriches the interface for negative (positive) mixing energy if the surface tensions of the two components are not very different. From molecular dynamics simulations of binary mixtures with different compositions and interactions we find that the Guggenheim relation is qualitatively satisfied at wall-induced interfaces for systems with negative mixing energy at all state points considered. For systems with positive mixing energy, this relation is found to be qualitatively valid at low densities, while it is violated at state points with high density where correlations in the liquid are strong. This observation is validated by a calculation of the density profiles of the two components of the mixture using density functional theory with the Ramakrishnan-Yussouff free-energy functional. Possible reasons for the violation of the Guggenheim relation are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A comprehensive numerical investigation on the impingement and spreading of a non-isothermal liquid droplet on a solid substrate with heterogeneous wettability is presented in this work. The time-dependent incompressible Navier-Stokes equations are used to describe the fluid flow in the liquid droplet, whereas the heat transfer in the moving droplet and in the solid substrate is described by the energy equation. The arbitrary Lagrangian-Eulerian (ALE) formulation with finite elements is used to solve the time-dependent incompressible Navier-Stokes equation and the energy equation in the time-dependent moving domain. Moreover, the Marangoni convection is included in the variational form of the Navier-Stokes equations without calculating the partial derivatives of the temperature on the free surface. The heterogeneous wettability is incorporated into the numerical model by defining a space-dependent contact angle. An array of simulations for droplet impingement on a heated solid substrate with circular patterned heterogeneous wettability are presented. The numerical study includes the influence of wettability contrast, pattern diameter, Reynolds number and Weber number on the confinement of the spreading droplet within the inner region, which is more wettable than the outer region. Also, the influence of these parameters on the total heat transfer from the solid substrate to the liquid droplet is examined. We observe that the equilibrium position depends on the wettability contrast and the diameter of the inner surface. Consequently. the heat transfer is more when the wettability contrast is small and/or the diameter of inner region is large. The influence of the Weber number on the total heat transfer is more compared to the Reynolds number, and the total heat transfer increases when the Weber number increases. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Maximum, spreading of liquid drops impacting on solid surfaces textured with unidirectional parallel grooves is studied for drop Weber number in the range 1-100 focusing on the role of texture geometry and wettability. The maximum spread factor of impacting drops measured perpendicular to grooves; beta(m,perpendicular to) is seen to be less than, that:measured parallel to grooves, beta(m,perpendicular to).The difference between beta(m,perpendicular to), and beta(m,parallel to) increases with drop impact velocity. This deviation of beta(m,perpendicular to) from beta(m,parallel to) is analyzed by considering the possible mechanisms, correspond, ing to experimental observations (1) impregnation of drop into the grooves, (2) convex shape of liquid vapor interface near contact line at maximum spreading, and (3) contact line pinning of spreading drop at the pillar edges by incorporating them into an energy conservation-based model. The analysis reveals that contact line pinning offers a physically meaningful justification of the observed: deviation of beta(m,perpendicular to) from beta(m,parallel to) compared to other possible candidates. A unified model, incorporating all the above-mentioned mechanisms, is formulated, which predicts beta(m,perpendicular to) on several groove-textured surfaces made of intrinsically hydrophilic and hydrophobic materials with an average error of 8.3%. The effect of groove-texture geometrical parameters,on maximum drop spreading is explained using this unified model. A special case of the unified model, with contact line pinning, absent, predicts beta(m,parallel to) with an average error of 6.3%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new liquid crystalline phase, induced by the addition of small amounts of a non-mesogenic solute (such as dimethyl sulphoxide or methyl iodide) to a quaternary ammonium salt, N-methyl-N,N,N-trioctadecylammonium iodide (MTAI), has been detected by NMR and optical microscopic studies. In some cases, there is a coexistence of nematic and smectic phases. Information on the ordering of the phases in the magnetic field of the spectrometer has been derived from NMR spectra of a dissolved molecule, C-13-enriched methyl iodide. The low order parameter of the pure thermotropic nematic phase of the salt provides first-order spectra of the dissolved oriented molecules. Analyses of spectra of cis,cis-mucononitrile exemplifies the utility of the MTAI nematic phase in the determination of structural parameters of the solute.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports a new class of photo-cross-linkable side chain liquid crystalline polymers (PSCLCPs) based on the bis(benzylidene)cyclohexanone unit, which functions as both a mesogen and a photoactive center. Polymers with the bis(benzylidene)cyclohexanone unit and varying spacer length have been synthesized. Copolymers of bis(benzylidene)cyclohexanone containing monomer and cholesterol benzoate containing monomer with different compositions have also been prepared. All these polymers have been structurally characterized by spectroscopic techniques. Thermal transitions were studied by DSC, and mesophases were identified by polarized light optical microscopy (POM). The intermediate compounds OH-x, the monomers SCLCM-x, and the corresponding polymers PSCLCP-x, which are essentially based on bis(benzylidene)cyclohexanone, all show a nematic mesophase. Transition temperatures were observed to decrease with increasing spacer length. The copolymers with varying compositions exhibit a cholesteric mesophase, and the transition temperatures increase with the cholesteric benzoate units in the copolymer. Photolysis of the low molecular weight liquid crystalline bis(benzylidene)-cyclohexanone compound reveals that there are two kinds of photoreactions in these systems: the EZ photoisomerization and 2 pi + 2 pi addition. The EZ photoisomerization in the LC phase disrupts the parallel stacking of the mesogens, resulting in the transition from the LC phase to the isotropic phase. The photoreaction involving the 2 pi + 2 pi addition of the bis(benzylidene)cyclohexanone units in the polymer results in the cross-linking of the chains. The liquid crystalline induced circular dichroism (LCICD) studies of the cholesterol benzoate copolymers revealed that the cholesteric supramolecular order remains even after the photo-cross-linking.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract: We report the growth and the electron cyclotron resonance measurements of n-type Si/Si0.62Ge0.38 and Si0.94Ge0.06/Si0.62Ge0.38 modulation-doped heterostructures grown by rapid thermal chemical vapor deposition. The strained Si and Si0.94Ge0.06 channels were grown on relaxed Si0.62Ge0.38 buffer layers, which consist of 0.6 mu m uniform Si0.62Ge0.38 layers and 0.5 mu m compositionally graded relaxed SiGe layers from 0 to 38% Ge. The buffer layers were annealed at 800 degrees C for 1 h to obtain complete relaxation. A 75 Angstrom Si(SiGe) channel with a 100 Angstrom spacer and a 300 Angstrom 2 X 10(19) cm(-3) n-type supply layer was grown on the top of the buffer layers. The cross-sectional transmission electron microscope reveals that the dense dislocation network is confined to the buffer layer, and relatively few dislocations terminate on the surface. The plan-view image indicates the threading dislocation density is about 4 X 10(6) cm(-2). The far-infrared measurements of electron cyclotron resonance were performed at 4 K with the magnetic field of 4-8 T. The effective masses determined from the slope of the center frequency of the absorption peak versus applied magnetic field plot are 0.203m(0) and 0.193m(0) for the two dimensional electron gases in the Si and Si0.94Ge0.06 channels, respectively. The Si effective mass is very close to that of a two dimensional electron gas in an Si MOSFET (0.198m(0)). The electron effective mass of Si0.94Ge0.06 is reported for the first time and is about 5% lower than that of pure Si.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two series of thermotropic main chain discotic liquid crystalline polyethers, PR4m-n, based on rufigallol were prepared starting from the symmetric tetraethers of rufigallol, R4m; m and n represent the number of carbon atoms in the side chain and spacer segment, respectively. The symmetric tetraethers were in turn readily prepared by selective alkylation of rufigallol under controlled phase-transfer conditions. GPC analysis of the polymers suggested that they were all of moderate molecular weights, with M-n varying between 5400 and 17 000. The length of the spacer segment n in these polyethers was systematically varied, and its effect on the phase transition temperatures and the mesophase structure was examined using DSC, polarized light microscopy, and X-ray diffraction. It is noticed that when the spacer lengths are relatively long(n greater than or equal to 2m), the isotropization temperature (TD-i) decreases as the spacer length n increases, an observation that is in accordance with those previously made. However, when the spacer lengths are relatively small (n < 2m), the dependence of TD-i is quite the opposite; TD-i actually increases with an increase in spacer length. Furthermore, X-ray diffraction studies indicate that, in the discotic columnar mesophases that are formed, the columns pack in a hexagonal manner when n greater than or equal to 2m, while they do so in a rectangular lattice when n < 2m, leading to the formation of Dh and Dr mesophases, respectively. Finally, comparison of the discotic polyethers with their low molar mass analogues confirms the role of polymerization in stabilizing the mesophase; while all the polymers exhibit columnar mesophases, some of their low molar mass analogues are not liquid crystalline.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Here we find through computer simulations and theoretical analysis that the low temperature thermodynamic anomalies of liquid water arises from the intermittent fluctuation between its high density and low density forms, consisting largely of 5-coordinated and 4-coordinated water molecules, respectively. The fluctuations exhibit strong dynamic heterogeneity (defined by the four point time correlation function), accompanied by a divergence like growth of the dynamic correlation length, of the type encountered in fragile supercooled liquids. The intermittency has been explained by invoking a two state model often employed to understand stochastic resonance, with the relevant periodic perturbation provided here by the fluctuation of the total volume of the system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An understanding of the effect of specific solute-solvent interactions on the diffusion of a solute probe is a long standing problem of physical chemistry. In this paper a microscopic treatment of this effect is presented. The theory takes into account the modification of the solvent structure around the solute due to this specific interaction between them. It is found that for strong, attractive interaction, there is an enhanced coupling between the solute and the solvent dynamic modes (in particular, the density mode), which leads to a significant increase in the friction on the solute. The diffusion coefficient of the solute is found to depend strongly and nonlinearly on the magnitude of the attractive interaction. An interesting observation is that specific solute-solvent interaction can induce a crossover from a sliplike to a sticklike diffusion. In the limit of strong attractive interaction, we recover a dynamic version of the solvent-berg picture. On the other hand, for repulsive interaction, the diffusion coefficient of the solute increases. These results are in qualitative agreement with recent experimental observations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The interface between toluene and water has been employed to prepare ultrathin Janus nanocrystalline films of metal oxides, metal chalcogenides and gold, wherein the surface on the organic-side is hydrophobic and the aqueous-side is hydrophilic. We have changed the nature of the metal precursor or capping agent in the organic layer to increase the hydrophobicity. The strategy employed for this purpose is to increase the length of the alkane chain in the precursor or use a perfluroalkane derivative as precursor or as a capping agent. The hydrophobicity and hydrophilicity of the Janus films have been determined by contact angle measurements. The morphology of hydrophobic and hydrophilic sides of the film have been examined by field emission scanning electron microscopy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have analyzed the diameters of the liquid–liquid coexistence curves of several binary liquid mixtures in search of the critical anomaly predicted by current theories. We find that while the data are consistent with the predicted functional form, the evidence for such an anomaly is not compelling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Proton NMR spectra of 1,3-diazanaphthalene and 1,2,4-triazanaphthalene have been investigated in the nematic phase of three liquid crystals. The spectral analysis provided direct dipole-dipole couplings which have been used to derive the molecular structure. Geometry of the phenyl ring in both the molecules deviates from the regular hexagonal structure. Signs of the order parameter of the largest magnitude are opposite in liquid crystals with positive diamagetic anisotropies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The detailed electronic structure of the n-v addition compound H2O·BF3 has been investigated for the first time by a combined use of electron energy loss spectroscopy (EELS) and UV photoelectron spectroscopy (UPS) augmented by MO calculations. The calculated molecular orbital energies of H2O·BF3 agree well with the UPS results and have been used to assign the electronic transitions obtained from EELS and to construct an orbital correlation diagram. The Journal of Chemical Physics is copyrighted by The American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple volume dilatometer is described for the precise measurements of volume changes as a function of temperature in liquid mixtures. The expansivity of (cyclohexane + acetic anhydride) in the critical region was measured. The critical solution temperature Tc was approached to within 9 mK. For T > (Tc + 0.3 K), the results results follow both a logarithmic and a power-law behaviour with an exponent ≈ 1/8. But for T < (Tc + 0.3 K), the results seem to be affected possibly by gravity or temperature gradients. In this region, the expected expansivity anomaly is rounded off to a cusp. The expansivity shows a reduced anomaly for off-critical compositions. A discussion of the local extremum and a correlation between negative expansivity and the resistivity anomaly are also given.