195 resultados para Ultrafine grains


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Local heating is an important parameter in compaction of thermally sensitive solids since local hot spots could conceivably raise the temperature of the system by several hundred degrees. To understand the importance of local hot spots, 20 g of ammonium perchlorate (AP) and potassium perchlorate (KP) were pressed together at 1500 kg cm−2 for 5 min. The surface structural examination of the compact revealed a secondary phase at the interfaces between the grains in the compositions ranging from 50% AP-50% KP to 10% AP-90% KP. The observation of the secondary phase only at the interfaces has been attributed to the short life times of temperature pulses present during the compaction. An interesting aspect of the investigation is the formation of a series of solid solutions of AP-KP.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Preparation of semisolid slurry using a cooling slope is increasingly becoming popular, primarily because of the simplicity in design and ease control of the process. In this process, liquid alloy is poured down an inclined surface which is cooled from underneath. The cooling enables partial solidification and the incline provides the necessary shear for producing semisolid slurry. However, the final microstructure of the ingot depends on several process parameters such as cooling rate, incline angle of the cooling slope, length of the slope and initial melt superheat. In this work, a CFD model using volume of fluid (VOF) method for simulating flow along the cooling slope was presented. Equations for conservation of mass, momentum, energy and species were solved to predict hydrodynamic and thermal behavior, in addition to predicting solid fraction distribution and macrosegregation. Solidification was modeled using an enthalpy approach and a volume averaged technique for the different phases. The mushy region was modeled as a multi-layered porous medium consisting of fixed columnar dendrites and mobile equiaxed/fragmented grains. The alloy chosen for the study was aluminum alloy A356, for which adequate experimental data were available in the literature. The effects of two key process parameters, namely the slope angle and the pouring temperature, on temperature distribution, velocity distribution and macrosegregation were also studied.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polycrystalline diamond coatings are grown on Si (100) substrate by hot filament CVD technique. We investigate here the effect of substrate roughening on the substrate temperature and methane concentration required to maintain high quality, high growth rate and faceted morphology of the diamond coatings. It has been shown that as we increase the substrate roughness from 0.05 mu m to 0.91 mu m (centre line average or CLA) there is enhancement in deposited film quality (Raman peak intensity ratio of sp (3) to non-sp (3) content increases from 1.65 to 7.13) and the substrate temperature can be brought down to 640A degrees C without any additional substrate heating. The coatings grown at adverse conditions for sp (3) deposition has cauliflower morphology with nanocrystalline grains and coatings grown under favourable sp (3) condition gives clear faceted grains.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Grain growth kinetics was studied for commercially pure magnesium subjected to equal channel angular extrusion (ECAE). The specimens were ECAE processed upto 4 passes at 523 K following all the three important routes, namely A, 13, and C. Texture and microstructures of the samples were studied using Electron Back Scattered Diffraction (EBSD) technique in a Field Emission Gun Scanning Electron Microscope (FEG-SEM). It was observed that the grain size significantly reduces after ECAE. ECAE process produces a slightly rotated B and C-2 fiber. Static annealing leads to normal grain growth with unimodal distribution of grains through out the temperature range. Average activation energy for grain growth in the temperature range studied is found to be less than the activation energy for lattice diffusion and grain boundary diffusion of magnesium. No significant change in texture during isochronal annealing for 1 hour i.e., the predominant deformation texture remains same.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ultrahigh-temperature (UHT) granulites of the central Highland Complex, Sri Lanka, underwent some of the highest known peak temperatures of crustal metamorphism. Zircon and monazite U-Pb systems in granulites near Kandy, the highest grade region (similar to 1050 degrees C; 0.9 GPa), preserve both a record of the timing of prograde and retrograde phases of UHT metamorphism and evidence for the ages of older protolith components. Zircon grains from a quartz-saturated granulite containing relics of the peak UHT assemblage have remnant detrital cores with dates of ca. 2.5-0.83 Ga. Date clusters of ca. 1.7 and 1.04-0.83 Ga record episodes of zircon growth in the source region of the protolith sediment. Two generations of overgrowths with contrasting Th/U record metamorphic zircon growth at 569 +/- 5 and 551 +/- 7 Ma, probably in the absence and presence of monazite, respectively. The age of coexisting metamorphic monazite (547 +/- 7 Ma) is indistinguishable from that of the younger, low-Th/U zircon overgrowths. Zircon from a quartz-undersaturated monazite-absent UHT granulite with a mainly retrograde assemblage is mostly metamorphic (551 +/- 5 Ma). The ca. 570 Ma zircon overgrowths in the quartz-saturated granulite probably record partial melting just before or at the metamorphic peak. The ca. 550 Ma zircon in both rocks, and the ca. 550 Ma monazite in the quartz-saturated sample, record post-peak isothermal decompression. A possible model for this pressure-temperature-time evolution is ultrahot collisional orogeny during the assembly of Gondwana, locally superheated by basaltic underplating, followed by fast extensional exhumation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High nonlinearity coefficients of 60–150 are observed in the current‐voltage (I‐V) curves of the mixed phase ceramics formed by cosintering ZnO with spinel phases having large negative temperature coefficients (NTCs) in resistivity. The region of negative slope in the I‐V curves of the NTC ceramics is progressively made positive with ZnO phase content, wherein ZnO grains function as a built‐in resistor in series to the resistance of the NTC phase. High α depends on the optimum phase content of ZnO as much as its intrinsic conductivity. The studies indicate that the predominent contribution to power dissipation is by way of joule heating from the resistive component of the current.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Attempts were made to produce directionally solidified, specifically grain aligned Al-6 wt pct Ni eutectic alloy using a laboratory scale ESR unit. For this purpose sand cast alloy electrodes were electroslag remelted under different mold conditions. The grain structure of the ingots obtained from these meltings showed that insulated silica molds gave the best vertical alignment of grains along the length of the ingot. The NiAl3 fibers within the grains tended to fan out and there was only a preferred alignment of fibers along the growth direction under the conditions of our experiments. The ESR parameters most suitable for vertical alignment of eutectic grains have been identified. In some electroslag remelting trials ingots were grown on a seed ingot. This resulted in a fewer vertical grains compared to the case when no seed ingot was used. The sand cast specimen of the eutectic exhibited a maximum tensile strength of around 88.2 MN/m2 (9.0 kg/mm2) whereas conventional ESR using water cooled mold gave strength value of 98.0 MN/m2 (10 kg/mm2). The directionally solidified ESR material showed longitudinal tensile strength as high as 213.7 MN/m2 (21.8 kg/mm2) which could be further increased to 220.6 MN/m2 (22.5 kg/mm2) by using the seed ingot. The average growth rate was varied between 5 to 25 mm/min during electroslag remelting in this study. The flow stresses, tangent modulus and ultimate tensile strength of directionally solidified eutectic increased with increasing growth rates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The formation of anomalous indentations, with two opposite faces describing a pin-cushion effect and the other two faces normal, in long elongated grains of an extruded Mg-2Al-1Zn alloy is reported. Subsurface microstructural observations combined with Schmid factor calculations suggest that extension twinning accompanied by basal slip are the reasons for these. Johnson's expanding cavity model is invoked for further substantiation. (C) 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The electroslag refining technique is one of the modern tools which is capable of imparting superior mechanical and chemical properties to metals and alloys. Refining usually results in the elimination of a number of casting or solidification defects, such as shrinkage porosity, gas porosity, pipe, micro- and macro segregation. Remelting also imparts a directional grain structure apart from refining the size of the inclusions, grains and precipitates. This technique has over the years been used widely and successfully to improve the mechanical and chemical properties of steels and alloy steels which are used in the nuclear, missile, aerospace and marine industries for certain critical applications. But the application of ESR to aluminium and its alloys is only recent. This paper investigates the response of an aluminium alloy (corresponding to the Indian Specification IS: 7670) to ESR. Based on theoretical considerations and microstructural evidence it elucidates how ESR of aluminium alloys differs from that of ferrous alloys. The improvement achieved in mechanical properties of the alloy is correlated with the microstructure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The long-wavelength hydrodynamics of the Renn-Lubensky twist grain boundary phase with grain boundary angle 2pialpha, alpha irrational, is studied. We find three propagating sound modes, with two of the three sound speeds vanishing for propagation orthogonal to the grains, and one vanishing for propagation parallel to the grains as well. In addition, we find that the viscosities eta1, eta2, eta4, and eta5 diverge like 1/Absolute value of omega as frequency omega --> 0, with the divergent parts DELTAeta(i) satisfying DELTAeta1DELTAeta4=(DELTAeta5)2, exactly. Our results should also apply to the predicted decoupled lamellar phase.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present work describes the evolution of a strong, single-component rotated-Brass ((1 1 0) < 5 5 6 >) texture in an Al-Zn-Mg-Cu-Zr alloy by an uneven hot cross-rolling with frequent interpass annealing. This texture development is unique because hot rolling of aluminum alloys results in orientation distribution along the ``beta-fibre''. It has been demonstrated that the deformation by cross-rolling of a partially recrystallized grain structure having rotated-Cube and Goss orientations, and the recrystallization resistance of near-Brass-oriented elongated grains play a critical role in development of this texture. (C) 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nanocomposites of Al?In, Al?Pb, and Zn?Pb have been prepared and characterized using rapid quenching techniques and the nature of superconducting transitions in them has been studied by resistivity measurements. The precipitated second phases (In and Pb) have particle sizes (d) of a few tens of nanometers such that ?0?d?dmin, where ?0 is the superconducting zero temperature coherence length and dmin is the minimum particle size that supports superconductivity. The onset of superconductivity generally starts in samples with d??0 and progressively other grains with d??0 become superconducting. We suggest that the proximity effect of the matrix plays a significant role. In an Al?In system, even with 40?wt.% In, the zero resistivity state is obtained at T?1.33 times the Tc of Al. But in Al?Pb and Zn?Pb, the zero resistivity state is obtained at T?4 and 5 times the Tc of Al and Zn with only 10�15 wt?% Pb, respectively.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Microstructural and superconducting properties of YBa2Cu3O7-x thin films grown in situ on bare sapphire by pulsed laser deposition using YBa2Cu3O7-x targets doped with 7 and 10 wt% Ag have been studied. Ag-doped films grown at 730 degrees C on sapphire have shown very significant improvement over the undoped YBa2Cu3O7-x films grown under identical condition. A zero resistance temperature of 90 K and a critical current density of 1.2 x 10(6) A/cm(2) at 77 K have been achieved on bare sapphire for the first time. Improved connectivity among grains and reduced reaction rate between the substrate and the film caused due to Ag in the film are suggested to be responsible for this greatly improved transport properties.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The characteristics of hot deformation of INCONEL alloy MA 754 have been studied processing maps obtained on the basis of flow stress data generated in compression in the temperature range 700-degrees-C to 1150-degrees-C and strain rate range 0.001 to 100 s-1. The map exhibited three domains. (1) A domain of dynamic recovery occurs in the temperature range 800-degrees-C to 1075-degrees-C and strain rate range 0.02 to 2 s-1, with a peak efficiency of 18 pct occurring at 950-degrees-C and 0.1 s-1. Transmission electron microscope (TEM) micrographs revealed stable subgrain structure in this domain with the subgrain size increasing exponentially with an increase in temperature. (2) A domain exhibiting grain boundary cracking occurs at temperatures lower than 800-degrees-C and strain rates lower than 0.01 s-1. (3) A domain exhibiting intense grain boundary cavitation occurs at temperatures higher than 1075-degrees-C. The material did not exhibit a dynamic recrystallization (DRX) domain, unlike other superalloys. At strain rates higher than about 1 s-1, the material exhibits flow instabilities manifesting as kinking of the elongated grains and adiabatic shear bands. The material may be safely worked in the domain of dynamic recovery but can only be statically recrystallized.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The hot deformation characteristics of IN 600 nickel alloy are studied using hot compression testing in the temperature range 850-1200-degrees-C and strain rate range 0.001-100 s-1. A processing map for hot working is developed on the basis of the data obtained, using the principles of dynamic materials modelling. The map exhibits a single domain with a peak efficiency of power dissipation of 48% occurring at 1200-degrees-C and 0.2 s-1, at which the material undergoes dynamic recrystallisation (DRX). These are the optimum conditions for hot working of IN 600. At strain rates higher than 1 s-1, the material exhibits flow localisation and its microstructure consists of localised bands of fine recrystallised grains. The presence of iron in the Ni-Cr alloy narrows the DRX domain owing to a higher temperature required for carbide dissolution, which is essential for the occurrence of DRX. The efficiency of DRX in Ni-Cr is, however, enhanced by iron addition.