147 resultados para Tropical plants
Resumo:
Nucleotide pyrophosphatase of mung bean seedlings has earlier been isolated in our laboratory in a dimeric form (Mr 65,000) and has been shown to be converted to a tetramer by AMP and to a monomer by p-hydroxymercuribenzoate. All the molecular forms were enzymatically active with different kinetic properties. By a modified procedure using blue-Sepharose affinity chromatography, we have now obtained a dimeric form of the enzyme which is desensitized to AMP interaction. The molecular weight of the desensitized form of the enzyme was found to be the same as that of the native dimeric enzyme. However, the desensitized enzyme functioned with a linear time course, contrary to the biphasic time course exhibited by the native enzyme. In addition, it was not converted to a tetramer on the addition of AMP, had only one binding site for adenine nucleotides, and p-hydroxy-mercuribenzoate had no effect on the time course of the reaction or on the molecular weight of the enzyme. The temperature optimum of the desensitized enzyme was found to be 67 °C in contrast to the optimum of 49 °C for the native dimer. Fifty percent of the tryptophan residues of the desensitized enzyme were not accessible for quenching by iodide. Fluorescence studies gave Kd values of 0.34, 2.2, and 0.8 mImage for AMP, ADP, and ATP, which were close to the Ki values of 0.12, 2.2, and 0.9 mImage , respectively, for these nucleotides. The binding and inhibition studies with AMP and its analogs showed that the 6-amino group and the 5′-phosphate group were essential for the inhibition of the enzyme activity.
Resumo:
A thermal model for a conventional biogas plant has been developed in order to understand the heat transfer from the slurry and the gas holder to the surrounding earth and air respectively. The computations have been performed for two conditions : (i) when the slurry is at an ambient temperature of 20°C, and (ii) when it is at 35°C, the optimum temperature for anaerobic fermentation. Under both these conditions, the gas holder is the major “culprit” with regard to heat losses from the biogas plant. The calculations provide an estimate for the heat which has to be supplied by external means to compensate for the net heat losses which occur if the slurry is to be maintained at 35°C. Even if this external supply of heat is realised through (the calorific value of) biogas, there is a net increase in the biogas output, and therefore a net benefit, by operating the plant at 35°C. At this elevated temperature, the cooling effect of adding the influent at ambient temperature is not insignificant. In conclusion, the results of the thermal analysis are used to define a strategy for operating biogas plants at optimum temperatures, or at higher temperatures than the ambient.
Resumo:
STABLE-ISOTOPE ratios of carbon in soils or lake sediments1-3 and of oxygen and hydrogen in peats4,5 have been found to reflect past moisture variations and hence to provide valuable palaeoclimate records. Previous applications of the technique to peat have been restricted to temperate regions, largely because tropical climate variations are less pronounced, making them harder to resolve. Here we present a deltaC-13 record spanning the past 20 kyr from peats in the Nilgiri hills, southern India. Because the site is at high altitude (>2,000 m above sea level), it is possible to resolve a clear climate signal. We observe the key climate shifts that are already known to have occurred during the last glacial maximum (18 kyr ago) and the subsequent deglaciation. In addition, we observe an arid phase from 6 to 3.5 kyr ago, and a short, wet phase about 600 years ago. The latter appears to correspond to the Mediaeval Warm Period, which previously was believed to be confined to Europe and North America6,7. Our results therefore suggest that this event may have extended over the entire Northern Hemisphere.
Resumo:
Patterns of leaf-flushing phenology of trees in relation to insect herbivore damage were studied at two sites in a seasonal tropical dry forest in Mudumalai, southern India, from April 1988 to August 1990. At both sites the trees began to flush leaves during the dry season, reaching a peak leaf-flushing phase before the onset of rains. Herbivorous insects emerged with the rains and attained a peak biomass during the wet months. Trees that flushed leaves later in the season suffered significantly higher damage by insects compared to those that flushed early or in synchrony during the peak flushing phase. Species whose leaves were endowed with physical defenses such as waxes suffered less damage than those not possessing such defenses. There was a positive association between the abundance of a species and leaf damage levels. These observations indicate that herbivory may have played a major role in moulding leaf flushing phenology in trees of the seasonal tropics.
Resumo:
A conceptual model is proposed to explain the observed aperiodicity in the short term climate fluctuations of the tropical coupled ocean-atmosphere system. This is based on the evidence presented here that the tropical coupled ocean-atmosphere system sustains a low frequency inter-annual mode and a host of higher frequency intra-seasonal unstable modes. At long wavelengths, the low frequency mode is dominant while at short wavelengths, the high frequency modes are dominant resulting in the co-existence of a long wave low frequency mode with some short wave intra-seasonal modes in the tropical coupled system. It is argued that due to its long wavelength, the low frequency mode would behave like a linear oscillator while the higher frequency short wave modes would be nonlinear. The conceptual model envisages that an interaction between the low frequency linear oscillator and the high frequency nonlinear oscillations results in the observed aperiodicity of the tropical coupled system. This is illustrated by representing the higher frequency intra-seasonal oscillations by a nonlinear low order model which is then coupled to a linear oscillator with a periodicity of four years. The physical mechanism resulting in the aperiodicity in the low frequency oscillations and implications of these results on the predictability of the coupled system are discussed.
Resumo:
Soils showing changes in plasticity characteristics upon driving form an important group in tropical soils. These changes are attributed to the grouping of particles into aggregates either due to mineralogy or presence of cementing agents and/or pore fluid characteristics. These changes are found to be permanent. In this paper, the effect of these changes leading to changes in index properties is discussed. The coefficient of permeability has been found to be comparable at liquid limit water content for different soils of varying liquid limit values. Permeability is an indirect reflection of microstructure and indicates the flow rate, which depends upon pore geometry. Other mechanical properties like compressibility and shear strength also depend upon pore geometry. These microstructural aspects of liquid limit as a reference state for the analysis of engineering behavior of tropical soils are examined in detail.
Resumo:
Black carbon (BC) aerosol mass concentrations measured using an aethalometer at Anantapur, a semi-arid tropical station in the southern part of peninsular India, from August 2006 to July 2007 are analyzed. Seasonal and diurnal variations of BC in relation to changes in the regional meteorological conditions have been studied along with the mass fraction of BC to the total aerosol mass concentration (M-t) and fine particle mass (FPM) concentration in different months. The data collected during the study period shows that the annual average BC mass concentration at Anantapur is 1.97 +/- 0.12 mu g m(-3). Seasonal variations of BC aerosol mass concentration showed high during the dry (winter and summer) seasons and low during the post-monsoon followed by the monsoon seasons. Diurnal variations of BC aerosols attain a gradual build up in BC concentration from morning and a sharp peak occurs between 07:00 and 09:00 h almost an hour after local sunrise and a broad nocturnal peak from 19:00 to 21:00 h with a minimum in noon hours. The ratio of BC to the fine particle mass concentration was high during the dry season and low during the monsoon season. The regression analysis between BC mass concentration and wind speed indicates that, with increase in wind speeds the BC mass concentrations would decrease and vice-versa. Aerosol BC mass concentration shows a significant positive correlation with total mass concentration (M-t) and aerosol optical depth (ACID, tau(p)) at 500 nm. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
1 Flowering and fruiting phenologies of a tropical dry forest in Mudumalai, southern India, were studied between April 1988 and August 1990. Two sites, a wetter site I receiving 1100mm and a drier site II receiving 600mm of rainfall annually, are compared. A total of 286 trees from 38 species at site I and 167 trees from 27 species at site II was marked for phenological observations. There were 11 species common to the two sites. Several hypotheses relating to the evolution of reproductive phenology are tested. 2 Frequency of species flowering attained a peak at site I during the dry season but at site II, where soil moisture may be limiting during the dry months, the peak was during the wet season. At both sites a majority of species flushed leaves and flowered simultaneously. Among various guilds, the bird-pollinated guild showed distinct dry season flowering, which may be related to better advertisement of large flowers to pollinators during the leafless dry phase. The wind-pollinated guild flowered mainly during the wet season, when wind speeds are highest and favourable for pollen transport. The insect-pollinated guild showed no seasonality in flowering in site I but a wet season flowering in site II. 3 Fruiting frequency attained a peak in site I during the late wet season extending into the early dry season; a time-lag correlation showed that fruiting followed rainfall with a lag of about two months. Site II showed a similar fruiting pattern but this was not statistically significant. The dispersal guilds (animal, wind, and explosive passively-dispersed) did not show any clear seasonality in fruiting, except for the animal-dispersed guild which showed wet season fruiting in site I. 4 Hurlbert's overlap index was also calculated in order to look at synchrony in flowering and fruiting irrespective of climatic (dry and wet month) seasonality. In general, overlap in flowering and fruiting guilds was high because of seasonal aggregation. Among the exceptions, at site II the wind-pollinated flowering guild did not show significant overlap between species although flowering aggregated in the wet season. This could be due to the need to avoid heterospecific pollen transfer. 5 Rarer species tended to flower earlier in the dry season and this again could be an adaptation to avoid the risk of heterospecific pollen transfer or competition for pollinators. The more abundant species flowered mainly during the wet season. Species which flower earlier have larger flowers and, having invested more energy in flowers, also have shorter flower to fruit durations.
Resumo:
Plant seeds usually have high concentrations of proteinase and amylase inhibitors. These inhibitors exhibit a wide range of specificity, stability and oligomeric structure. In this communication, we report analysis of sequences that show statistically significant similarity to the double-headed alpha-amylase/trypsin inhibitor of ragi (Eleusine coracana). Our aim is to understand their evolutionary and structural features. The 14 sequences of this family that are available in the SWISSPROT database form three evolutionarily distinct branches. The branches relate to enzyme specificities and also probably to the oligomeric state of the proteins and not to the botanical class of the plant from which the enzymes are derived. This suggests that the enzyme specificities of the inhibitors evolved before the divergence of commercially cultivated cereals. The inhibitor sequences have three regions that display periodicity in hydrophobicity. It is likely that this feature reflects extended secondary structure in these segments. One of the most variable regions of the polypeptide corresponds to a loop, which is most probably exposed in the native structure of the inhibitors and is responsible for the inhibitory property.
Resumo:
Peste des petits ruminants (PPR) is an acute, highly contagious disease of small ruminants caused by a morbillivirus, Peste des petits ruminants virus (PPRV). The disease is prevalent in equatorial Africa, the Middle East, and the Indian subcontinent. A live attenuated vaccine is in use in some of the countries and has been shown to provide protection for at least three years against PPR. However, the live attenuated vaccine is not robust in terms of thermotolerance. As a step towards development of a heat stable subunit vaccine, we have expressed a hemagglutinin-neuraminidase (HN) protein of PPRV in peanut plants (Arachis hypogea) in a biologically active form, possessing neuraminidase activity. Importantly. HN protein expressed in peanut plants retained its immunodominant epitopes in their natural conformation. The immunogenicity of the plant derived HN protein was analyzed in sheep upon oral immunization. Virus neutralizing antibody responses were elicited upon oral immunization of sheep in the absence of any mucosal adjuvant. In addition, anti-PPRV-HN specific cell-mediated immune responses were also detected in mucosally immunized sheep. (C) 2010 Elsevier B.V. All rights reserved.