344 resultados para Transmission electron microscopy tem
Resumo:
ZnO nanoneedles were successfully deposited on flexible polymer substrates at room temperature by activated reactive evaporation. Neither a catalyst nor a template was employed in this synthesis. These synthesized needles measured 500 - 600 nm in length and its diameter varied from 30 - 15 nm from the base to the tip. The single-crystalline nature of the nanoneedle was observed by high-resolution transmission electron microscopy studies. The Raman studies on these nanoneedles had shown that they are oxygen deficient in nature. A possible growth mechanism has been proposed here, in which the nanoneedles nucleate and grow in the gas phase by vapor-solid mechanism.
Resumo:
Electron paramagnetic resonance (EPR) and magnetic properties of nanowires of Pr0.57Ca0.41Ba0.02MnO3 (PCBMO) are studied and compared with those of the bulk material. PCBMO nanowires with diameter of 80-90 nm and length of similar to 3.5 mu m were synthesized by a low reaction temperature hydrothermal method and the bulk sample was prepared following a solid-state reaction route. The samples were characterized by X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The bulk PCBMO manganite exhibits charge order at 230 K along with a ferromagnetic transition at 110 K. However, superconducting quantum interference device measurements on the PCBMO nanowires show a complete `melting' of charge ordering and a ferromagnetic transition at 115 K. This result is confirmed by the EPR intensity behavior as well. However, the EPR line width, which is reflective of the spin dynamics, shows a shallow minimum for nanowires at the temperature corresponding to the charge-ordering transition, i.e., 230 K. We interpret this result as an indication of the presence of charge-ordering fluctuations in the nanowires even though the static charge order is absent, thus heralding the occurrence of charge order in the bulk sample.
Resumo:
Sr2SbMnO6 (SSM) powders were successfully synthesized at reasonably low temperatures via molten-salt synthesis (MSS) method using eutectic composition of 0.635 Li2SO4-0.365 Na2SO4 (flux). High-temperature cubic phase SSM was stabilized at room temperature by calcining the as-synthesized powders at 900 degrees C/10 h. The phase formation and morphology of these powders were characterized via X-ray powder diffraction and scanning electron microscopy, respectively. The SSM phase formation associated with similar to 60 nm sized crystallites was also confirmed by transmission electron microscopy. The activation energy associated with the particle growth was found to be 95 +/- 5 kJ mol(-1). The dielectric constant of the tetragonal phase of the ceramic (fabricated using this cubic phase powder) with and without the flux (sulphates) has been monitored as a function of frequency (100 Hz-1 MHz) at room temperature. Internal barrier layer capacitance (IBLC) model was invoked to rationalize the dielectric properties.
Resumo:
Aurivillus intergrowth Bi4Ti3O12-5BiFeO(3) was demonstrated to be ferroelectric that evoked the possibility of achieving high temperature magnetoelectric property in this family of compounds. X-ray diffraction studies confirmed its structure to be orthorhombic [Fmm2; a=5.5061(11) A degrees, b=5.4857(7) A degrees, c=65.742(12) A degrees]. However, transmission electron microscopy established the random incidence of intergrowth at nanoscale corresponding to n=6 and n=7 members of the Aurivillius family. Diffuse ferroelectric orthorhombic to paraelectric tetragonal phase transition around 857 K was confirmed by dielectric and high temperature x-ray diffraction studies. Polarization versus electric field hysteresis loops associated with 2P(r) of 5.2 mu C/cm(2) and coercive field of 42 kV/cm were obtained at 300 K.
Resumo:
Aminoglycoside resistance in six clinically isolated Staphylococcus aureus was evaluated. Genotypical examination revealed that three isolates (HLGR-10, HLGR-12, and MSSA-21) have aminoglycoside-modifying enzyme (AME) coding genes and another three (GRSA-2, GRSA-4, and GRSA-6) lacked these genes in their genome. Whereas isolates HLGR-10 and HLGR-14 possessed bifunctional AME coding gene aac(6′)-aph(2′′), and aph(3′)-III and showed high-level resistance to gentamycin and streptomycin, MSSA-21 possessed aph(3′)-III and exhibited low resistance to gentamycin, streptomycin, and kanamycin. The remaining three isolates (GRSA-2, GRSA-4, and GRSA-6) exhibited low resistance to all the aminoglycosides because they lack aminoglycoside-modifying enzyme coding genes in their genome. The transmission electron microscopy of the three isolates revealed changes in cell size, shape, and septa formation, supporting the view that the phenomenon of adaptive resistance is operative in these isolates.
Resumo:
A simple effective pyrolysis technique has been developed to synthesize aligned arrays of multi-walled carbon nanotubes (MWCNTs) without using any carrier gas in a single-stage furnace at 700 °C. This technique eliminates nearly the entire complex and expensive machinery associated with other extensively used methods for preparation of CNTs such as chemical vapour deposition (CVD) and pyrolysis. Carbon source materials such as xylene, cyclohexane, camphor, hexane, toluene, pyridine and benzene have been pyrolyzed separately with the catalyst source material ferrocene to obtain aligned arrays of MWCNTs. The synthesized CNTs have been characterized by scanning electron microscopy (SEM), x-ray diffraction (XRD), transmission electron microscopy (TEM), thermogravimetric analysis (TGA) and Raman spectroscopy. In this technique, the need for the tedious and time-consuming preparation of metal catalysts and continuously fed carbon source material containing carrier gas can be avoided. This method is a single-step process where not many parameters are required to be monitored in order to prepare aligned MWCNTs. For the production of CNTs, the technique has great advantages such as low cost and easy operation.
Resumo:
Formation of nanocrystalline TiN at low temperatures was demonstrated by combining Pulsed Laser Deposition (PLD) and ion implantation techniques. The Ti films of nominal thickness similar to 250 nm were deposited at a substrate temperature of 200 degrees C by ablating a high pure titanium target in UHV conditions using a nanosecond pulsed Nd:YAG laser operating at 1064 nm. These films were implanted with 100 keV N+ ions with fluence ranging from 1.0 x 10(16) ions/cm(2) to 1.0 x 10(17) ions/cm(2). The structural, compositional and morphological evolutions were tracked using Transmission Electron Microscopy (TEM), Secondary Ion Mass Spectrometry (SIMS) and Atomic Force Microscopy (AFM), respectively. TEM analysis revealed that the as-deposited titanium film is an fcc phase. With increasing ion fluence, its structure becomes amorphous phase before precipitation of nanocrystalline fcc TiN phase. Compositional depth profiles obtained from SIMS have shown the extent of nitrogen concentration gradient in the implantation zone. Both as-deposited and ion implanted films showed much higher hardness as compared to the bulk titanium. AFM studies revealed a gradual increase in surface roughness leading to surface patterning with increase in ion fluence.
Resumo:
Owing to widespread applications, synthesis and characterization of silver nanoparticles is recently attracting considerable attention. Increasing environmental concerns over chemical synthesis routes have resulted in attempts to develop biomimetic approaches. One of them is synthesis using plant parts, which eliminates the elaborate process of maintaining the microbial culture and often found to be kinetically favourable than other bioprocesses. The present study deals with investigating the effect of process variables like reductant concentrations, reaction pH, mixing ratio of the reactants and interaction time on the morphology and size of silver nanoparticles synthesized using aqueous extract of Azadirachta indica (Neem) leaves. The formation of crystalline silver nanoparticles was confirmed using X-ray diffraction analysis. By means of UV spectroscopy, Scanning and Transmission Electron Microscopy techniques, it was observed that the morphology and size of the nanoparticles were strongly dependent on the process parameters. Within 4 h interaction period, nanoparticles below 20-nm-size with nearly spherical shape were produced. On increasing interaction time (ageing) to 66 days, both aggregation and shape anisotropy (ellipsoidal, polyhedral and capsular) of the particles increased. In alkaline pH range, the stability of cluster distribution increased with a declined tendency for aggregation of the particles. It can be inferred from the study that fine tuning the bioprocess parameters will enhance possibilities of desired nano-product tailor made for particular applications.
Resumo:
Multiwall carbon nanotubes (MWNTs) filled with Fe nanoparticles (NPs) have been synthesized by thermal chemical vapor deposition of ferrocene alone as the precursor. The MWNTs were grown at different temperatures: 980 and 800 degrees C. Characterization of as-prepared MWNTs was done by scanning and transmission electron microscopy, and X-ray diffraction. The transmission electron microscopy study revealed that Fe NPs encapsulated in MWNTs grown at 980 and 800 degrees C are spherical and rod shaped, respectively. Room-temperature vibrating sample magnetometer studies were done on the two samples up to a field of 1T. The magnetization versus magnetic field loop reveals that the saturation magnetization for the two samples varies considerably, almost by a factor of 4.6. This indicates that Fe is present in different amounts in the MWNTs grown at the two different temperatures. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
We describe the synthesis and structure of Barium sulfate nanoparticles by precipitation method in the presence of water soluble inorganic stabilizing agent, sodium hexametaphosphate, (NaPO3)(6). The structural parameters were refined by the Rietveld refinement method using powder X-ray diffraction data. Barium sulfate nanoparticles were crystallized in the orthorhombic structure with space group Pbnm (No. 62) having the lattice parameters a = 7.215(1) (angstrom), b = 8.949(1) (angstrom) and c = 5.501 (1) (angstrom) respectively. Transmission electron microscopy study reveals that the nanoparticles are size range, 30-50 nm. Fourier transform infrared spectra showed distinct absorption due to the SO42- moiety at 1115 and 1084 cm(-1) indicating formation of barium sulfate nanoparticles free from the phosphate group from the stabilizer used in the synthesis. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
We demonstrate that commonly face-centered cubic (fcc) metallic nanowires can be stabilized in hexagonal structures even when their surface energy contribution is relatively small. With a modified electrochemical growth process, we have grown purely single-crystalline 4H silver nanowires (AgNWs) of diameters as large as 100 nm within nanoporous anodic alumina and polycarbonate templates. The growth process is not limited by the/Ag Nernst equilibrium potential, and time-resolved imaging with high-resolution transmission electron microscopy (TEM) indicates a kinematically new mechanism of nanowire growth. Most importantly, our experiments aim to separate the effects of confinement and growth conditions on the crystal structure of nanoscale systems.
Resumo:
We report the fabrication of La0.7Ca0.3MnO3 nanotubes (LCMONTs) with a diameter of about 200 nm, by a modified sol-gel method utilizing nanochannel alumina templates. High resolution transmission electron microscopy confirmed that the obtained LCMONTs are made up of nanoparticles (8-12 nm), which are randomly aligned in the wall of the nanotubes. The strong irreversibility between zero field cooling (ZFC) and field cooling (FC) magnetization curves as well as a cusplike peak in the ZFC curve gives strong support for surface spin glass behavior.
Resumo:
Nanostructured MnO2 was synthesized at ambient condition by reduction of potassium permanganate with aniline. Powder X-ray diffraction, thermal analysis (thermogravimetric and differential thermal analysis), Brunauer-Emmett-Teller surface area, and infrared spectroscopy studies were carried out for physical and chemical characterization. The as-prepared MnO2 was amorphous and contained particles of 5-10 nm diameter. Upon annealing at temperatures >400°C, the amorphous MnO2 attained crystalline α-phase with a concomitant change in morphology. A gradual conversion of nanoparticles to nanorods is evident from scanning electron microscopy and transmission electron microscopy (TEM) studies. High-resolution TEM images suggested that nanoparticles and nanorods grow in different crystallographic planes. Capacitance behavior was studied by cyclic voltammetry and galvanostatic charge-discharge cycling in a potential range from -0.2 to 1.0 V vs SCE in 0.1 M sodium sulfate solution. Specific capacitance of about 250 F g-1 was obtained at a current density of 0.5 mA cm-2(0.8 A g-1).
Resumo:
Membrane formation from gemini pseudoglyceryl lipids bearing n-C14H29 and n-C16H33 chains has been reported. These lipid aggregates have been characterized using transmission electron microscopy (TEM), dynamic light scattering (DLS), high sensitivity differential scanning calorimetry (DSC), and Paldan fluorescence studies. The length of the spacer between the cationic ammonium headgroups has been varied from -(CH2)(3)- (propandiyl) to -(CH2)(12)- (dodecandiyl) in these lipids. All gemini lipids were found to generate stable suspensions in aqueous media. Electron microscopic studies revealed the smaller size of the gemini lipid aggregates as compared to their monomeric lipid counterparts. DLS measurements showed that the gemini lipid suspensions with a -(CH2)(8)- spacer length were bigger in size than that of other analogues. DSC studies suggest the unusual behavior of the gemini lipids bearing -(CH2)3- propanediyl spacer based lipids. These observations were consistent irrespective of the hydrocarbon chain lengths of the lipids. Paldan fluorescence based hydration studies showed that the hexadecyl chain based gemini lipid aggregates bearing a -(CH2)(12)- spacer were the most hydrated in their gel states among all the gemini lipid series investigated herein.
Resumo:
Multiwall carbon nanotubes (MWCNTs) were decorated with crystalline zinc oxide nanoparticles (ZnO NPs) by wet chemical route to form MWCNT/ZnO NPs hybrid. The hybrid sample was characterized by scanning and transmission electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopy. Electrical conductivity of the hybrid can be tuned by varying the ZnO NPs content in the hybrid. In order to investigate the effect of nanoparticles loading on the conduction of MWCNTs network, electrical conductivity studies have been carried out in the wide temperature range 1.5-300K. The electrical conductivity of the hybrid below 100K is explained with the combination of variable range hopping conduction and thermal fluctuation induced tunnelling model. (C) 2009 Elsevier B.V. All rights reserved.