71 resultados para Szego polynomials


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The paper discusses the frequency domain based solution for a certain class of wave equations such as: a second order partial differential equation in one variable with constant and varying coefficients (Cantilever beam) and a coupled second order partial differential equation in two variables with constant and varying coefficients (Timoshenko beam). The exact solution of the Cantilever beam with uniform and varying cross-section and the Timoshenko beam with uniform cross-section is available. However, the exact solution for Timoshenko beam with varying cross-section is not available. Laplace spectral methods are used to solve these problems exactly in frequency domain. The numerical solution in frequency domain is done by discretisation in space by approximating the unknown function using spectral functions like Chebyshev polynomials, Legendre polynomials and also Normal polynomials. Different numerical methods such as Galerkin Method, Petrov- Galerkin method, Method of moments and Collocation method or the Pseudo-spectral method in frequency domain are studied and compared with the available exact solution. An approximate solution is also obtained for the Timoshenko beam with varying cross-section using Laplace Spectral Element Method (LSEM). The group speeds are computed exactly for the Cantilever beam and Timoshenko beam with uniform cross-section and is compared with the group speeds obtained numerically. The shear mode and the bending modes of the Timoshenko beam with uniform cross-section are separated numerically by applying a modulated pulse as the shear force and the corresponding group speeds for varying taper parameter in are obtained numerically by varying the frequency of the input pulse. An approximate expression for calculating group speeds corresponding to the shear mode and the bending mode, and also the cut-off frequency is obtained. Finally, we show that the cut-off frequency disappears for large in, for epsilon > 0 and increases for large in, for epsilon < 0.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Maximality of a contractive tuple of operators is considered. A characterization for a contractive tuple to be maximal is obtained. The notion of maximality for a submodule of the Drury-Arveson module on the -dimensional unit ball is defined. For , it is shown that every submodule of the Hardy module over the unit disc is maximal. But for we prove that any homogeneous submodule or submodule generated by polynomials is not maximal. A characterization of maximal submodules is obtained.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fix a prime p. Given a positive integer k, a vector of positive integers Delta = (Delta(1), Delta(2), ... , Delta(k)) and a function Gamma : F-p(k) -> F-p, we say that a function P : F-p(n) -> F-p is (k, Delta, Gamma)-structured if there exist polynomials P-1, P-2, ..., P-k : F-p(n) -> F-p with each deg(P-i) <= Delta(i) such that for all x is an element of F-p(n), P(x) = Gamma(P-1(x), P-2(x), ..., P-k(x)). For instance, an n-variate polynomial over the field Fp of total degree d factors nontrivially exactly when it is (2, (d - 1, d - 1), prod)- structured where prod(a, b) = a . b. We show that if p > d, then for any fixed k, Delta, Gamma, we can decide whether a given polynomial P(x(1), x(2), ..., x(n)) of degree d is (k, Delta, Gamma)-structured and if so, find a witnessing decomposition. The algorithm takes poly(n) time. Our approach is based on higher-order Fourier analysis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a physics-based closed form small signal Nonquasi-static (NQS) model for a long channel Common Double Gate MOSFET (CDG) by taking into account the asymmetry that may prevail between the gate oxide thickness. We use the unique quasi-linear relationship between the surface potentials along the channel to solve the governing continuity equation (CE) in order to develop the analytical expressions for the Y parameters. The Bessel function based solution of the CE is simplified in form of polynomials so that it could be easily implemented in any circuit simulator. The model shows good agreement with the TCAD simulation at-least till 4 times of the cut-off frequency for different device geometries and bias conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An iterative image reconstruction technique employing B-Spline potential function in a Bayesian framework is proposed for fluorescence microscopy images. B-splines are piecewise polynomials with smooth transition, compact support and are the shortest polynomial splines. Incorporation of the B-spline potential function in the maximum-a-posteriori reconstruction technique resulted in improved contrast, enhanced resolution and substantial background reduction. The proposed technique is validated on simulated data as well as on the images acquired from fluorescence microscopes (widefield, confocal laser scanning fluorescence and super-resolution 4Pi microscopy). A comparative study of the proposed technique with the state-of-art maximum likelihood (ML) and maximum-a-posteriori (MAP) with quadratic potential function shows its superiority over the others. B-Spline MAP technique can find applications in several imaging modalities of fluorescence microscopy like selective plane illumination microscopy, localization microscopy and STED. (C) 2015 Author(s).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Let R be a (commutative) local principal ideal ring of length two, for example, the ring R = Z/p(2)Z with p prime. In this paper, we develop a theory of normal forms for similarity classes in the matrix rings M-n (R) by interpreting them in terms of extensions of R t]-modules. Using this theory, we describe the similarity classes in M-n (R) for n <= 4, along with their centralizers. Among these, we characterize those classes which are similar to their transposes. Non-self-transpose classes are shown to exist for all n > 3. When R has finite residue field of order q, we enumerate the similarity classes and the cardinalities of their centralizers as polynomials in q. Surprisingly, the polynomials representing the number of similarity classes in M-n (R) turn out to have non-negative integer coefficients.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We consider the problem of representing a univariate polynomial f(x) as a sum of powers of low degree polynomials. We prove a lower bound of Omega(root d/t) for writing an explicit univariate degree-d polynomial f(x) as a sum of powers of degree-t polynomials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we present the solutions of 1-D and 2-D non-linear partial differential equations with initial conditions. We approach the solutions in time domain using two methods. We first solve the equations using Fourier spectral approximation in the spatial domain and secondly we compare the results with the approximation in the spatial domain using orthogonal functions such as Legendre or Chebyshev polynomials as their basis functions. The advantages and the applicability of the two different methods for different types of problems are brought out by considering 1-D and 2-D nonlinear partial differential equations namely the Korteweg-de-Vries and nonlinear Schrodinger equation with different potential function. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We show here a 2(Omega(root d.log N)) size lower bound for homogeneous depth four arithmetic formulas. That is, we give an explicit family of polynomials of degree d on N variables (with N = d(3) in our case) with 0, 1-coefficients such that for any representation of a polynomial f in this family of the form f = Sigma(i) Pi(j) Q(ij), where the Q(ij)'s are homogeneous polynomials (recall that a polynomial is said to be homogeneous if all its monomials have the same degree), it must hold that Sigma(i,j) (Number of monomials of Q(ij)) >= 2(Omega(root d.log N)). The above mentioned family, which we refer to as the Nisan-Wigderson design-based family of polynomials, is in the complexity class VNP. Our work builds on the recent lower bound results 1], 2], 3], 4], 5] and yields an improved quantitative bound as compared to the quasi-polynomial lower bound of 6] and the N-Omega(log log (N)) lower bound in the independent work of 7].

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Helmke et al. have recently given a formula for the number of reachable pairs of matrices over a finite field. We give a new and elementary proof of the same formula by solving the equivalent problem of determining the number of so called zero kernel pairs over a finite field. We show that the problem is, equivalent to certain other enumeration problems and outline a connection with some recent results of Guo and Yang on the natural density of rectangular unimodular matrices over F-qx]. We also propose a new conjecture on the density of unimodular matrix polynomials. (C) 2016 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The bilateral filter is a versatile non-linear filter that has found diverse applications in image processing, computer vision, computer graphics, and computational photography. A common form of the filter is the Gaussian bilateral filter in which both the spatial and range kernels are Gaussian. A direct implementation of this filter requires O(sigma(2)) operations per pixel, where sigma is the standard deviation of the spatial Gaussian. In this paper, we propose an accurate approximation algorithm that can cut down the computational complexity to O(1) per pixel for any arbitrary sigma (constant-time implementation). This is based on the observation that the range kernel operates via the translations of a fixed Gaussian over the range space, and that these translated Gaussians can be accurately approximated using the so-called Gauss-polynomials. The overall algorithm emerging from this approximation involves a series of spatial Gaussian filtering, which can be efficiently implemented (in parallel) using separability and recursion. We present some preliminary results to demonstrate that the proposed algorithm compares favorably with some of the existing fast algorithms in terms of speed and accuracy.