140 resultados para Stokes waves
Resumo:
An analysis involving a transformation of the velocity potential and a Fourier Sine Transform technique is described to study the effect of surface tension on incoming surface waves against a vertical cliff with a periodic wall perturbation. Known results are recovered as particular cases of the general problem considered. An analytical expression is derived for the surface elevation, at far distances from the shore-line, by using Watson's lemma and a representative table of numerical values of the coefficients of the resulting asymptotic expansion is also presented.
Resumo:
The free energy contribution of capillary waves is calculated to show its significant dependence on the thickness of the liquid layer, when the thickness is very small. It is shown that these oscillations can play an important role in determining the thermodynamic stability of a wetting layer, close to the critical point of a binary liquid mixture in the case of both short range and long range forces. In particular, the thickness of the wetting layer goes to zero as the temperature T approaches Tc.
Resumo:
The coupling of surface acoustic waves propagating in two separated piezoelectric media is studied using the perturbation theory of Auld. The results of the analysis are applied to two configurations using Bi12GeO20 and CdS crystals. It is found that the loss due to coupling is about 7 dB at 50 MHz in the cases of (111)-cut, [110]-prop. Bi12GeO20 and Y-cut, 60°-X prop. CdS combination. On étudie le couplage des ondes acoustiques de surface se propageant sur deux milieux piezo-eléctriques par la théorie de perturbation de Auld. Les resultats d'analyse sont appliqué's aux deux configurations des cristanx Bi12GeO20 et CdS. On trouve que la perte par couplage est environ de 7 dB a 50 MHz dans le cas de combination de (111)-coupe, [110]-prop. Bi12GeO20 et Y-coupe, 60°-X prop. CdS.
Resumo:
The dispersive characteristic of hydromagnetic surface waves along a plasma-plasma interface when the upper fluid moves with a uniform velocity is discussed. The region of propagation of these waves is shifted above or below depending on whether the basic velocity (uniform)Ugl0.
Resumo:
A class of self-propagating linear and nonlinear travelling wave solutions for compressible rotating fluid is studied using both numerical and analytical techiques. It is shown that, in general, a three dimensional linear wave is not periodic. However, for some range of wave numbers depending on rotation, horizontally propagating waves are periodic. When the rotation ohgr is equal to $$\sqrt {(\gamma - 1)/(4\gamma )}$$ , all horizontal waves are periodic. Here, gamma is the ratio of specific heats. The analytical study is based on phase space analysis. It reveals that the quasi-simple waves are periodic only in some plane, even when the propagation is horizontal, in contrast to the case of non-rotating flows for which there is a single parameter family of periodic solutions provided the waves propagate horizontally. A classification of the singular points of the governing differential equations for quasi-simple waves is also appended.
Resumo:
Theoretical study of propagation characteristics of VLF electromagnetic waves through an idealised parallel-plane earth-crust waveguide with overburden, experimental verification of some of these characteristics with the aid of a model tank and use of range equation reveal the superiority of radio communication between land and a deeply submerged terminal inside a ocean via the earth-crust over direct link communication through the ocean.
Resumo:
An exact solution is derived for a boundary-value problem for Laplace's equation which is a generalization of the one occurring in the course of solution of the problem of diffraction of surface water waves by a nearly vertical submerged barrier. The method of solution involves the use of complex function theory, the Schwarz reflection principle, and reduction to a system of two uncoupled Riemann-Hilbert problems. Known results, representing the reflection and transmission coefficients of the water wave problem involving a nearly vertical barrier, are derived in terms of the shape function.
Resumo:
Solitary waves and cnoidal waves have been found in an adiabatic compressible atmosphere which, under ambient conditions, has winds, and is isothermal. The theory is illustrated with an example for which the background wind is linearly increasing. It is found that the number of possible critical speeds of the flow depends crucially on whether the Richardson number is greater or less than one‐fourth.
Resumo:
The present investigation of ion-acoustic waves is based on the study of the nonlinearity of plasma waves in a dispersive medium. Here the authors study ion-acoustic solitary waves in a warm ion plasma with non-isothermal electrons and then the results for solitary waves in a plasma with isothermal electrons are obtained. Incorporating the previous results obtained from the solitary wave solutions, the authors generalize the effect of negative ions on ion-acoustic waves in plasmas consisting of either a warm or cold ion species. A reflection phenomenon of ions in these waves is also studied. These results can be generalized, but the discussion is limited to a particular model of the plasma.
Resumo:
Solitary waves and cnoidal waves have been found in an adiabatic compressible atmosphere which, under ambient conditions, has winds, and is isothermal. The theory is illustrated with an example for which the background wind is linearly increasing. It is found that the number of possible critical speeds of the flow depends crucially on whether the Richardson number is greater or less than one‐fourth.