178 resultados para Steel tubes
Resumo:
Several methods are available for predicting flexural strength of steel fiber concrete composites. In these methods, direct tensile strength, split cylinder strength, and cube strength are the basic engineering parameters that must be determined to predict the flexural strength of such composites. Various simplified forms of stress distribution are used in each method to formulate the prediction equations for flexural strength. In this paper, existing methods are reviewed and compared, and a modified empirical approach is developed to predict the flexural strength of fiber concrete composites. The direct tensile strength of the composite is used as the basic parameter in this approach. Stress distribution is established from the findings of flexural tests conducted as part of this investigation on fiber concrete prisms. A comparative study of the test values of an earlier investigation on fiber concrete slabs and the computed values from existing methods, including the one proposed, is presented.
Resumo:
An attempt to systematically investigate the effects of microstructural parameters in influencing the resistance to fatigue crack growth (FCG) in the near-threshold region under three different temper levels has been made for a high strength low alloy steel to observe in general, widely different trends in the dependence of both the total threshold stress intensity range, DELTA-K(th) and the intrinsic or effective threshold stress intensity range, DELTA-K(eff-th) on the prior austenitic grain size (PAGS). While a low strain hardening microstructure obtained by tempering at high temperatures exhibited strong dependence of DELTA-K(th) on the PAGS by virtue of strong interactions of crack tip slip with the grain boundary, a high strength, high strain hardening microstructure as a result of tempering at low temperature exhibited a weak dependence. The lack of a systematic variation of the near-threshold parameters with respect to grain size in temper embrittled structures appears to be related to the wide variations in the amount of intergranular fracture near threshold. Crack closure, to some extent provides a basis on which the increases in DELTA-K(th) at larger grain sizes can be rationalised. This study, in addition, provides a wide perspective on the relative roles of slip behaviour embrittlement and environment that result in the different trends observed in the grain size dependence of near-threshold fatigue parameters, based on which the inconsistency in the results reported in the literature can be clearly understood. Assessment of fracture modes through extensive fractography revealed that prior austenitic grain boundaries are effective barriers to cyclic crack growth compared to martensitic packet boundaries, especially at low stress intensities. Fracture morphologies comprising of low energy flat transgranular fracture can occur close to threshold depending on the combinations of strain hardening behaviour, yield strength and embrittlement effects. A detailed consideration is given to the discussion of cyclic stress strain behaviour, embrittlement and environmental effects and the implications of these phenomena on the crack growth behaviour near threshold.
Resumo:
This paper presents test results for 22 high strength deformed bars and nine mild steel bars subjected to monotonic repeated and reversed axial loading to determine the stress-strain behavior. Equations have been proposed for the stress-strain curves and have been compared with test results. Satisfactory agreement was obtained.
Resumo:
This paper presents test results for 22 high strength deformed bars and nine mild steel bars subjected to monotonic repeated and reversed axial loading to determine the stress-strain behavior. Equations have been proposed for the stress-strain curves and have been compared with test results. Satisfactory agreement was obtained.
Resumo:
We have discussed here the flow of a dilute suspension of rigid particles in Newtonian fluid in slowly varying tubes characterized by a small parameter ε. Solutions are presented in the form of asymptotic expansions in powers of ε. The effect of the suspension on the fluid is described by two parameters β and γ which depend on the volume fraction of the particles which we assume to be small. It is found that the presence of the particles accelerate the process of eddy formation near the constriction and shifts the point of separation.
Resumo:
The present article deals with the development of a finite element modelling approach for the prediction of residual velocities of hard core ogival-nose projectiles following normal impact on mild steel target plates causing perforation. The impact velocities for the cases analysed are in the range 818–866.3 m/s. Assessment of finite element modelling and analysis includes a comprehensive mesh convergence study using shell elements for representing target plates and solid elements for jacketed projectiles with a copper sheath and a rigid core. Dynamic analyses were carried out with the explicit contact-impact LS-DYNA 970 solver. It has been shown that proper choice of element size and strain rate-based material modelling of target plate are crucial for obtaining test-based residual velocity.The present modelling procedure also leads to realistic representation of target plate failure and projectile sheath erosion during perforation, and confirms earlier observations that thermal effects are not significant for impact problems within the ordnance range. To the best of our knowledge, any aspect of projectile failure or degradation obtained in simulation has not been reported earlier in the literature. The validated simulation approach was applied to compute the ballistic limits and to study the effects of plate thickness and projectile diameter on residual velocity, and trends consistent with experimental data for similar situations were obtained.
Resumo:
In some recent dropweight impact experiments [5] with pre-notched bend specimens of 4340 steel, it was observed that considerable crack tunneling occurred in the interior of the specimen prior to gross fracture initiation on the free surfaces. The final failure of the side ligaments happened because of shear lip formation. The tunneled region is characterized by a flat, fibrous fracture surface. In this paper, the experiments of [5] (corresponding to 5 m/s impact speed) are analyzed using a plane strain, dynamic finite element procedure. The Gurson constitutive model that accounts for the ductile failure mechanisms of micro-void nucleation, growth and coalescence is employed. The time at which incipient failure was observed near the notch tip in this computation, and the value of the dynamic J-integral, J d, at this time, compare reasonably well with experiments. This investigation shows that J-controlled stress and deformation fields are established near the notch tip whenever J d , increases with time. Also, it is found that the evolution of micro-mechanical quantities near the notch root can be correlated with the time variation of J d .The strain rate and the adiabatic temperature rise experienced at the notch root are examined. Finally, spatial variations of stresses and deformations are analyzed in detail.
Resumo:
The Landau damping of sound waves in a plasma consisting of ensemble of magnetic flux tubes is discussed. It is shown that sound waves cannot be Landau damped in general but under certain restricted conditions on plasma parameters the possibility of absorption of these waves can exist. The possibility of radiative damping of the acoustic waves along the magnetic filaments is also discussed. It appears that the most plausible mechanism of damping of sound waves in a plasma consisting of magnetic filaments can be due to scattering of a sound wave by the filaments.
Resumo:
Working under the hypothesis that magnetic flux in the sun is generated at the bottom of the convection zone, Choudhuri and Gilman (1987; Astrophys. J. 316, 788) found that a magnetic flux tube symmetric around the rotation axis, when released at the bottom of the convection zone, gets deflected by the Coriolis force and tends to move parallel to the rotation axis as it rises in the convection zone. As a result, all the flux emerges at rather high latitudes and the flux observed at the typical sunspot latitudes remains unexplained. Choudhuri (1989; Solar Physics, in press) finds that non-axisymmetric perturbations too cannot subdue the Coriolis force. In this paper, we no longer treat the convection zone to be passive as in the previous papers, but we consider the role of turbulence in the convection zone in inhibiting the Coriolis force. The interaction of the flux tubes with the turbulence is treated in a phenomenological way as follows: (1) Large scale turbulence on the scale of giant cells can physically drag the tubes outwards, thus pulling the flux towards lower latitudes by dominating over the Coriolis force. (2) Small scale turbulence of the size of the tubes can exchange angular momentum with the tube, thus suppressing the growth of the Coriolis force and making the tubes emerge at lower latitudes. Numerical simulations show that the giant cells can drag the tubes and make them emerge at lower latitufes only if the velocities within the giant cells are unrealistically large of if the radii of the flux tubes are as small as 10 km. However, small scale turbulence can successfully suppress the growth of the Coriolis force if the tubes have radii smaller than about 300 km which may not be unreasonable. Such flux tubes can then emerge at low latitudes where sunspots are seen.
Resumo:
The deformation characteristics of 304L stainless steel in compression in the temperature range 20–700°C and strain rate range 0·001–100 s−1 have been studied with the aim of characterising the .flow instabilities occurring in the microstructure. At higher temperatures and strain rates the stainless steel exhibits flow localisation, whereas at temperatures below 500°C and strain rates lower than 0·1 s−1 the flow instabilities are due to dynamic strain aging. Strain induced martensite formation is responsible for the flow instabilities at room temperature and low strain rates (0·01 s−1). In view of the occurrence of these instabilities, cold working is preferable to warm working to achieve dimensional tolerance and reproducible properties in the product. Among the different criteria tested to explain the occurrence of instabilities, the continuum criterion, developed on the basis of the principles of maximum rate of entropy production and separability of the dissipation function, predicts accurately all the above instability features.
Resumo:
Grinding media wear appears to be non-linear with the time of grinding in a laboratory-scale ball mill. The kinetics of wear can be expressed as a power law of the type w=atb, where the numerical constant a represents wear of a particular microstructure at time t = 1 min and b is the wear exponent which is independent of the particle size prevailing inside a ball mill at any instant of time of grinding. The wear exponent appears to be an indicator of the cutting wear mechanism in dry grinding: a plot of the inverse of the normalised wear exponent (Image ) versusHs (where Hs is the worn surface hardness of the media) yields a curve similar to that of a wear resistance plot obtained in the case of two-body sliding abrasive wear. This method of evaluating the cutting wear resistance of media is demonstrated by employing 15 different microstructures of AISI-SAE 52100 steel balls in dry grinding of quartz in a laboratory-scale ball mill.