143 resultados para Statistical mean
Resumo:
We study a sensor node with an energy harvesting source. In any slot,the sensor node is in one of two modes: Wake or Sleep. The generated energy is stored in a buffer. The sensor node senses a random field and generates a packet when it is awake. These packets are stored in a queue and transmitted in the wake mode using the energy available in the energy buffer. We obtain energy management policies which minimize a linear combination of the mean queue length and the mean data loss rate. Then, we obtain two easily implementable suboptimal policies and compare their performance to that of the optimal policy. Next, we extend the Throughput Optimal policy developed in our previous work to sensors with two modes. Via this policy, we can increase the through put substantially and stabilize the data queue by allowing the node to sleep in some slots and to drop some generated packets. This policy requires minimal statistical knowledge of the system. We also modify this policy to decrease the switching costs.
Resumo:
A Green's function technique is used in the scattering matrix formalism to compute the mean square displacement of hydrogen and deuterium interstitials in the intermetallic compound Fe0.5Ti0.5 for low hydrogen/deuterium concentration. The mean square amplitudes of the metal atoms surrounding the interstitial are found to be smaller than those for the host crystal. This anomalous effect is due to the stiffening of the lattice by the dissolved hydrogen or deuterium at low concentration. This type of effect is experimentally observed in the case of NbHx at low hydrogen concentration.
Resumo:
A systematic structure analysis of the correlation functions of statistical quantum optics is carried out. From a suitably defined auxiliary two‐point function we are able to identify the excited modes in the wave field. The relative simplicity of the higher order correlation functions emerge as a byproduct and the conditions under which these are made pure are derived. These results depend in a crucial manner on the notion of coherence indices and of unimodular coherence indices. A new class of approximate expressions for the density operator of a statistical wave field is worked out based on discrete characteristic sets. These are even more economical than the diagonal coherent state representations. An appreciation of the subtleties of quantum theory obtains. Certain implications for the physics of light beams are cited.
Resumo:
The absorption produced by the audience in concert halls is considered a random variable. Beranek's proposal [L. L. Beranek, Music, Acoustics and Architecture (Wiley, New York, 1962), p. 543] that audience absorption is proportional to the area they occupy and not to their number is subjected to a statistical hypothesis test. A two variable linear regression model of the absorption with audience area and residual area as regressor variables is postulated for concert halls without added absorptive materials. Since Beranek's contention amounts to the statement that audience absorption is independent of the seating density, the test of the hypothesis lies in categorizing halls by seating density and examining for significant differences among slopes of regression planes of the different categories. Such a test shows that Beranek's hypothesis can be accepted. It is also shown that the audience area is a better predictor of the absorption than the audience number. The absorption coefficients and their 95% confidence limits are given for the audience and residual areas. A critique of the regression model is presented.
Resumo:
We report novel results obtained for the Hubbard and t-J models by various mean-field approximations.
Resumo:
The prediction of the sound attenuation in lined ducts with sheared mean flow has been a topic of research for many years. This involves solving the sheared mean flow wave equation, satisfying the relevant boundary condition. As far as the authors' knowledge goes, this has always been done using numerical techniques. Here, an analytical solution is presented for the wave propagation in two-dimensional rectangular lined ducts with laminar mean flow. The effect of laminar mean flow is studied for both the downstream and the upstream wave propagation. The attenuation values predicted for the laminar mean flow case are compared with those for the case of uniform mean flow. Analytical expressions are derived for the transfer matrices.
Resumo:
We obtain metal-insulator phase diagrams at half-filling for the five-band extended Hubbard model of the square-planar CuO2 lattice treated within a Hartree-Fock mean-field approximation, allowing for spiral spin-density waves. We indicate the existence of an insulating phase (covalent insulator) characterized by strong covalency effects, not identified in the earlier Zaanen-Sawatzky-Allen phase diagram. While the insulating phase is always antiferromagnetic, we also obtain an antiferromagnetic metallic phase for a certain range of interaction parameters. Performing a nonperturbative calculation of J(eff), the in-plane antiferromagnetic interaction is presented as a function of the parameters in the model. We also calculate the band gap and magnetic moments at various sites and discuss critically the contrasting interpretation of the electronic structure of high-T(c) materials arising from photoemission and neutron-scattering experiments.
Resumo:
We have developed a theory for an electrochemical way of measuring the statistical properties of a nonfractally rough electrode. We obtained the expression for the current transient on a rough electrode which shows three times regions: short and long time limits and the transition region between them. The expressions for these time ranges are exploited to extract morphological information about the surface roughness. In the short and long time regimes, we extract information regarding various morphological features like the roughness factor, average roughness, curvature, correlation length, dimensionality of roughness, and polynomial approximation for the correlation function. The formulas for the surface structure factors (the measure of surface roughness) of rough surfaces in terms of measured reversible and diffusion-limited current transients are also obtained. Finally, we explore the feasibility of making such measurements.
Resumo:
A theoretical analysis of the three currently popular microscopic theories of solvation dynamics, namely, the dynamic mean spherical approximation (DMSA), the molecular hydrodynamic theory (MHT), and the memory function theory (MFT) is carried out. It is shown that in the underdamped limit of momentum relaxation, all three theories lead to nearly identical results when the translational motions of both the solute ion and the solvent molecules are neglected. In this limit, the theoretical prediction is in almost perfect agreement with the computer simulation results of solvation dynamics in the model Stockmayer liquid. However, the situation changes significantly in the presence of the translational motion of the solvent molecules. In this case, DMSA breaks down but the other two theories correctly predict the acceleration of solvation in agreement with the simulation results. We find that the translational motion of a light solute ion can play an important role in its own solvation. None of the existing theories describe this aspect. A generalization of the extended hydrodynamic theory is presented which, for the first time, includes the contribution of solute motion towards its own solvation dynamics. The extended theory gives excellent agreement with the simulations where solute motion is allowed. It is further shown that in the absence of translation, the memory function theory of Fried and Mukamel can be recovered from the hydrodynamic equations if the wave vector dependent dissipative kernel in the hydrodynamic description is replaced by its long wavelength value. We suggest a convenient memory kernel which is superior to the limiting forms used in earlier descriptions. We also present an alternate, quite general, statistical mechanical expression for the time dependent solvation energy of an ion. This expression has remarkable similarity with that for the translational dielectric friction on a moving ion.
Resumo:
We present analytic results to show that the Schwinger-boson hole-fermion mean-field state exhibits non-Fermi liquid behavior due to spin-charge separation. The physical electron Green's function consists of three additive components. (a) A Fermi-liquid component associated with the bose condensate. (b) A non-Fermi liquid component which has a logarithmic peak and a long tail that gives rise to a linear density of states that is symmetric about the Fermi level and a momentum distribution function with a logarithmic discontinuity at the Fermi surface. (c) A second non-Fermi liquid component associated with the thermal bosons which leads to a constant density of states. It is shown that zero-point fluctuations associated with the spin-degrees of freedom are responsible for the logarithmic instabilities and the restoration of particle-hole symmetry close to the Fermi surface.
Resumo:
Time evolution of mean-squared displacement based on molecular dynamics for a variety of adsorbate-zeolite systems is reported. Transition from ballistic to diffusive behavior is observed for all the systems. The transition times are found to be system dependent and show different types of dependence on temperature. Model calculations on a one-dimensional system are carried out which show that the characteristic length and transition times are dependent on the distance between the barriers, their heights, and temperature. In light of these findings, it is shown that it is possible to obtain valuable information about the average potential energy surface sampled under specific external conditions.
Resumo:
We present the results of our detailed pseudospectral direct numerical simulation (DNS) studies, with up to 1024(3) collocation points, of incompressible, magnetohydrodynamic (MHD) turbulence in three dimensions, without a mean magnetic field. Our study concentrates on the dependence of various statistical properties of both decaying and statistically steady MHD turbulence on the magnetic Prandtl number Pr-M over a large range, namely 0.01 <= Pr-M <= 10. We obtain data for a wide variety of statistical measures, such as probability distribution functions (PDFs) of the moduli of the vorticity and current density, the energy dissipation rates, and velocity and magnetic-field increments, energy and other spectra, velocity and magnetic-field structure functions, which we use to characterize intermittency, isosurfaces of quantities, such as the moduli of the vorticity and current density, and joint PDFs, such as those of fluid and magnetic dissipation rates. Our systematic study uncovers interesting results that have not been noted hitherto. In particular, we find a crossover from a larger intermittency in the magnetic field than in the velocity field, at large Pr-M, to a smaller intermittency in the magnetic field than in the velocity field, at low Pr-M. Furthermore, a comparison of our results for decaying MHD turbulence and its forced, statistically steady analogue suggests that we have strong universality in the sense that, for a fixed value of Pr-M, multiscaling exponent ratios agree, at least within our error bars, for both decaying and statistically steady homogeneous, isotropic MHD turbulence.