62 resultados para Sport satellite account


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Anthropogenic aerosols play a crucial role in our environment, climate, and health. Assessment of spatial and temporal variation in anthropogenic aerosols is essential to determine their impact. Aerosols are of natural and anthropogenic origin and together constitute a composite aerosol system. Information about either component needs elimination of the other from the composite aerosol system. In the present work we estimated the anthropogenic aerosol fraction (AF) over the Indian region following two different approaches and inter-compared the estimates. We espouse multi-satellite data analysis and model simulations (using the CHIMERE Chemical transport model) to derive natural aerosol distribution, which was subsequently used to estimate AF over the Indian subcontinent. These two approaches are significantly different from each other. Natural aerosol satellite-derived information was extracted in terms of optical depth while model simulations yielded mass concentration. Anthropogenic aerosol fraction distribution was studied over two periods in 2008: premonsoon (March-May) and winter (November-February) in regard to the known distinct seasonality in aerosol loading and type over the Indian region. Although both techniques have derived the same property, considerable differences were noted in temporal and spatial distribution. Satellite retrieval of AF showed maximum values during the pre-monsoon and summer months while lowest values were observed in winter. On the other hand, model simulations showed the highest concentration of AF in winter and the lowest during pre-monsoon and summer months. Both techniques provided an annual average AF of comparable magnitude (similar to 0.43 +/- 0.06 from the satellite and similar to 0.48 +/- 0.19 from the model). For winter months the model-estimated AF was similar to 0.62 +/- 0.09, significantly higher than that (0.39 +/- 0.05) estimated from the satellite, while during pre-monsoon months satellite-estimated AF was similar to 0.46 +/- 0.06 and the model simulation estimation similar to 0.53 +/- 0.14. Preliminary results from this work indicate that model-simulated results are nearer to the actual variation as compared to satellite estimation in view of general seasonal variation in aerosol concentrations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Among the multiple advantages and applications of remote sensing, one of the most important uses is to solve the problem of crop classification, i.e., differentiating between various crop types. Satellite images are a reliable source for investigating the temporal changes in crop cultivated areas. In this letter, we propose a novel bat algorithm (BA)-based clustering approach for solving crop type classification problems using a multispectral satellite image. The proposed partitional clustering algorithm is used to extract information in the form of optimal cluster centers from training samples. The extracted cluster centers are then validated on test samples. A real-time multispectral satellite image and one benchmark data set from the University of California, Irvine (UCI) repository are used to demonstrate the robustness of the proposed algorithm. The performance of the BA is compared with two other nature-inspired metaheuristic techniques, namely, genetic algorithm and particle swarm optimization. The performance is also compared with the existing hybrid approach such as the BA with K-means. From the results obtained, it can be concluded that the BA can be successfully applied to solve crop type classification problems.