146 resultados para Spectral broadening


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The issue of dynamic spectrum scene analysis in any cognitive radio network becomes extremely complex when low probability of intercept, spread spectrum systems are present in environment. The detection and estimation become more complex if frequency hopping spread spectrum is adaptive in nature. In this paper, we propose two phase approach for detection and estimation of frequency hoping signals. Polyphase filter bank has been proposed as the architecture of choice for detection phase to efficiently detect the presence of frequency hopping signal. Based on the modeling of frequency hopping signal it can be shown that parametric methods of line spectral analysis are well suited for estimation of frequency hopping signals if the issues of order estimation and time localization are resolved. An algorithm using line spectra parameter estimation and wavelet based transient detection has been proposed which resolves above issues in computationally efficient manner suitable for implementation in cognitive radio. The simulations show promising results proving that adaptive frequency hopping signals can be detected and demodulated in a non cooperative context, even at a very low signal to noise ratio in real time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The problem of determining optimal power spectral density models for earthquake excitation which satisfy constraints on total average power, zero crossing rate and which produce the highest response variance in a given linear system is considered. The solution to this problem is obtained using linear programming methods. The resulting solutions are shown to display a highly deterministic structure and, therefore, fail to capture the stochastic nature of the input. A modification to the definition of critical excitation is proposed which takes into account the entropy rate as a measure of uncertainty in the earthquake loads. The resulting problem is solved using calculus of variations and also within linear programming framework. Illustrative examples on specifying seismic inputs for a nuclear power plant and a tall earth dam are considered and the resulting solutions are shown to be realistic.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The 1H and 13C NMR spectra of N-(2-pyridinyl)-, N-(4-methyl2-pyridinyl)-, and N-(6-methyl-2-pyridinyl)-3-pyridine-carboxamides (1�3, respectively) and 3-pyridinecarboxamide (4) in different solvents have been analysed using COSY, HETCOR, chemical shift and coupling constant correlations. The conformations of 1�4 have been obtained by utilizing the NMR spectra, NOE experiments and MINDO/3 calculations. In dilute solutions, the 2-pyridyl ring is coplanar with the amide group while the 3-pyridyl ring is apparently not. Compounds 1�3 dimerize through cooperative hydrogen bonding in concentrated CDCl3 solution (approximately 0.1 M) and the structure of the dimer resembles some of the DNA base-pairs. Hydrogen bonding between N---H and the solvent molecules hinders dimerization in (CD3)2CO and CD3CN.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The H-1 NMR spectra of N-(4-methylphenyl)-2-pyridinecarboxamide and N-(4-methyl-phenyl)-3-pyridine carboxamide in CDCl3 and (CD3)(2)CO have been analysed with the help of the COSY spectra. Accurate H-1 chemical shifts and coupling constants have been obtained from the simulated spectra. From H-1 NMR and Nuclear Overhauser Enhancement (NOE) measurements the molecular conformations are inferred. The pyridyl ring is apparently coplanar with the amide group while the 3-pyridyl ring is nearly perpendicular to the amide plane so that the amide proton is nearer to the 2-pyridyl proton H2 than to H4. The orientation of the 4-methylphenyl group could not be determined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of binuclear Co(II), Ni(II) and Cu(II) complexes were synthesized by the template condensation of glyoxal, biacetyl or benzil bis-hydrazide, 2,6-diformyl-4-methylphenol and Co(11), Ni(II) or Cu(II) chloride in a 2:2:2 M ratio in ethanol. These 22-membered macrocyclic complexes were characterized by elemental analyses, magnetic, molar conductance, spectral, thermal and fluorescence studies. Elemental analyses suggest the complexes have a 2:1 stoichiometry of the type (M2LX2]center dot nH(2)O and Ni(2)LX(2)2H(2)O]center dot nH(2)O (where M = Co(II) and Cu(II); L = H2L1, H2L2 and H2L3; X = Cl; n = 2). From the spectroscopic and magnetic studies, it has been concluded that the Co(11) and Cu(11) complexes display a five coordinated square pyramidal geometry and the Ni(II) complexes have a six coordinated octahedral geometry. The Schiff bases and their metal complexes have also been screened for their antibacterial and antifungal activities by the MIC method. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A model representing the vibrations of a coupled fluid-solid structure is considered. This structure consists of a tube bundle immersed in a slightly compressible fluid. Assuming periodic distribution of tubes, this article describes the asymptotic nature of the vibration frequencies when the number of tubes is large. Our investigation shows that classical homogenization of the problem is not sufficient for this purpose. Indeed, our end result proves that the limit spectrum consists of three parts: the macro-part which comes from homogenization, the micro-part and the boundary layer part. The last two components are new. We describe in detail both macro- and micro-parts using the so-called Bloch wave homogenization method. Copyright (C) 1999 John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Poly(o-toluidine) (POT) and poly(m-toluidine) (PMT) blends with polyvinylchloride (PVC) of five different compositions have been prepared by solution blending. The POT-PVC and PMT-PVC blends were prepared using THF as a solvent in which POT-HNO3, PMT-HNO3 bases and PVC are soluble. The blends have been characterized by spectral, thermal and electrical measurements. The results indicate the formation of blends at all the compositions presently studied. The thermal stability of the POT-PVC and PMT-PVC blends is higher than that of POT-HNO3 and PMT-HNO3 salts, respectively. Using the present method, POT/PMT can conveniently be blended with 30% wt/wt of PVC without significant loss in its conductivity. (C) 1998 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have studied the power spectral density [S(f) = gamma/f(alpha)] of universal conductance fluctuations (UCF's) in heavily doped single crystals of Si, when the scatterers themselves act as the primary source of dephasing. We observed that the scatterers, with internal dynamics like two-level-systems, produce a significant, temperature-dependent reduction in the spectral slope alpha when T less than or similar to 10 K, as compared to the bare 1/f (alphaapproximate to1) spectrum at higher temperatures. It is further shown that an upper cutoff frequency (f(m)) in the UCF spectrum is necessary in order to restrict the magnitude of conductance fluctuations, [(deltaG(phi))(2)], per phase coherent region (L-phi(3)) to [(deltaGphi)(2)](1/2) less than or similar to e(2)/h. We find that f(m) approximate to tau(D)(-1), where tau(D) = L-2/D, is the time scale of the diffusive motion of the electron along the active length (L) of the sample (D is the electron diffusivity).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the exact one-electron propagator and spectral function of a solvable model of interacting electrons due to Schulz and Shastry. The solution previously found for the energies and wave functions is extended to give spectral functions that turn out to be computable, interesting, and nontrivial. They provide one of the few examples of cases where the spectral functions are known asymptotically as well as exactly.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An efficient strategy for identification of delamination in composite beams and connected structures is presented. A spectral finite-element model consisting of a damaged spectral element is used for model-based prediction of the damaged structural response in the frequency domain. A genetic algorithm (GA) specially tailored for damage identification is derived and is integrated with finite-element code for automation. For best application of the GA, sensitivities of various objective functions with respect to delamination parameters are studied and important conclusions are presented. Model-based simulations of increasing complexity illustrate some of the attractive features of the strategy in terms of accuracy as well as computational cost. This shows the possibility of using such strategies for the development of smart structural health monitoring softwares and systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An AB(2) monomer, 1-(2-hydroxyethoxy)-3,5-bis-(methoxymethyl)-2,4,6-trimethylbenzene, was synthesized from mesitol and melt-polycondensed in the presence of an acid catalyst via a transetherification process at 145-150 degreesC to yield a soluble, moderately high molecular weight hyperbranched polyether. The degree of branching in the polymer was calculated to be 0.78 by a comparison of its NMR spectrum with that of an appropriately designed model compound. The weight-average molecular weight of the hyperbranched polymer was determined to be 64,600 (weight-average molecular weight/number-average molecular weight = 5.2) by size exclusion chromatography (SEC) in CHCl3, with polystyrene standards. The origin of the broad molecular weight distribution, which could either be intrinsic to such hyperbranched structures or be due to structural heterogeneity, was further probed by the fractionation of the samples by SEC and by the subjection of each fraction to matrix-assisted laser desorption/ionization time-of-flight mass spectral analysis. The mass spectral analysis suggested the presence of two primary types of species: one corresponding to the simple branched structure and the other to macrocyclics. Interestingly, from the relative intensities of the two peaks, it was apparent that cyclization became favorable at higher conversions in the melt transetherification process. (C) 2002 Wiley Periodicals, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A geometrically non-linear Spectral Finite Flement Model (SFEM) including hysteresis, internal friction and viscous dissipation in the material is developed and is used to study non-linear dissipative wave propagation in elementary rod under high amplitude pulse loading. The solution to non-linear dispersive dissipative equation constitutes one of the most difficult problems in contemporary mathematical physics. Although intensive research towards analytical developments are on, a general purpose cumputational discretization technique for complex applications, such as finite element, but with all the features of travelling wave (TW) solutions is not available. The present effort is aimed towards development of such computational framework. Fast Fourier Transform (FFT) is used for transformation between temporal and frequency domain. SFEM for the associated linear system is used as initial state for vector iteration. General purpose procedure involving matrix computation and frequency domain convolution operators are used and implemented in a finite element code. Convergnence of the spectral residual force vector ensures the solution accuracy. Important conclusions are drawn from the numerical simulations. Future course of developments are highlighted.