91 resultados para Semiconductor manufacturing
Resumo:
The focus of this paper is on designing useful compliant micro-mechanisms of high-aspect-ratio which can be microfabricated by the cost-effective wet etching of (110) orientation silicon (Si) wafers. Wet etching of (110) Si imposes constraints on the geometry of the realized mechanisms because it allows only etch-through in the form of slots parallel to the wafer's flat with a certain minimum length. In this paper, we incorporate this constraint in the topology optimization and obtain compliant designs that meet the specifications on the desired motion for given input forces. Using this design technique and wet etching, we show that we can realize high-aspect-ratio compliant micro-mechanisms. For a (110) Si wafer of 250 µm thickness, the minimum length of the etch opening to get a slot is found to be 866 µm. The minimum achievable width of the slot is limited by the resolution of the lithography process and this can be a very small value. This is studied by conducting trials with different mask layouts on a (110) Si wafer. These constraints are taken care of by using a suitable design parameterization rather than by imposing the constraints explicitly. Topology optimization, as is well known, gives designs using only the essential design specifications. In this work, we show that our technique also gives manufacturable mechanism designs along with lithography mask layouts. Some designs obtained are transferred to lithography masks and mechanisms are fabricated on (110) Si wafers.
Resumo:
Topology optimization methods have been shown to have extensive application in the design of microsystems. However, their utility in practical situations is restricted to predominantly planar configurations due to the limitations of most microfabrication techniques in realizing structures with arbitrary topologies in the direction perpendicular to the substrate. This study addresses the problem of synthesizing optimal topologies in the out-of-plane direction while obeying the constraints imposed by surface micromachining. A new formulation that achieves this by defining a design space that implicitly obeys the manufacturing constraints with a continuous design parameterization is presented in this paper. This is in contrast to including manufacturing cost in the objective function or constraints. The resulting solutions of the new formulation obtained with gradient-based optimization directly provide the photolithographic mask layouts. Two examples that illustrate the approach for the case of stiff structures are included.
Resumo:
Insertion of just a few impurity atoms in a host semiconductor nanocrystal can drastically alter its phase, shape, and physical properties. Such doped nanomaterials now constitute an important class of optical materials that can provide efficient, stable, and tunable dopant emission in visible and NIR spectral windows. Selecting proper dopants and inserting them in appropriate hosts can generate many new series of such doped nanocrystals with several unique and attractive properties in order to meet current challenges in the versatile field of luminescent materials. However, the synthesis of such doped nanomaterials with a specific dopant in a predetermined host at a desired site leading to targeted optical properties requires fundamental understanding of both the doping process as well as the resulting photophysical properties. Summarizing up to date literature reports, in this Perspective we discuss important advances in synthesis methods and in-depth understanding of the optical properties, with an emphasis on the most widely investigated Mn-doped semiconductor nanocrystals.
Resumo:
In this paper, we propose an approach, using Coloured Petri Nets (CPN) for modelling flexible manufacturing systems. We illustrate our methodology for a Flexible Manufacturing Cell (FMC) with three machines and three robots. We also consider the analysis of the FMC for deadlocks using the invariant analysis of CPNs.
Resumo:
Flexible Manufacturing Systems (FMS), widely considered as the manufacturing technology of the future, are gaining increasing importance due to the immense advantages they provide in terms of cost, quality and productivity over the conventional manufacturing. An FMS is a complex interconnection of capital intensive resources and high levels of system performance is very crucial for survival in a competing environment.Discrete event simulation is one of the most popular methods for performance evaluation of FMS during planning, design and operation phases. Indeed fast simulators are suggested for selection of optimal strategies for flow control (which part type to enter and at what instant), AGV scheduling (which vehicle to carry which part), routing (which machine to process the part) and part selection (which part for processing next). In this paper we develop a C-net based model for an FMS and use the same for distributed discrete event simulation. We illustrate using examples the efficacy of destributed discrete event simulation for the performance evaluation of FMSs.
Resumo:
The effect of Mg doping in ZnO is investigated through structural, electrical, and optical properties. Zn1−xMgxO (0<×<0.3) thin films were deposited on Si (100) and corning glass substrates using multimagnetron sputtering. Investigations on the structural properties of the films revealed that the increase in Mg concentration resulted in phase evolution from hexagonal to cubic phase. The temperature dependent study of dielectric constant at different frequencies exhibited a dielectric anomaly at 110 °C. The Zn0.7Mg0.3O thin films exhibited a well-defined polarization hysteresis loop with a remnant polarization of 0.2 μC/cm2 and coercive field of 8 kV/cm at room temperature. An increase in the band gap with an increase in Mg content was observed in the range of 3.3–3.8 eV for x = 0–0.3. The average transmittance of the films was higher than 90% in the wavelength region λ = 400–900 nm.
Resumo:
In this paper, we have studied the effect of gate-drain/source overlap (LOV) on the drain channel noise and induced gate current noise (SIg) in 90 nm N-channel metal oxide semiconductor field effect transistors using process and device simulations. As the change in overlap affects the gate tunneling leakage current, its effect on shot noise component of SIg has been taken into consideration. It has been shown that “control over LOV” allows us to get better noise performance from the device, i.e., it allows us to reduce noise figure, for a given leakage current constraint. LOV in the range of 0–10 nm is recommended for the 90 nm gate length transistors, in order to get the best performance in radio frequency applications.
Resumo:
The spectral characteristics of a diode laser are significantly affected due to interference caused between the laser diode output and the optical feedback in the external-cavity. This optical feedback effect is of practical use for linewidth reduction, tuning or for sensing applications. A sensor based on this effect is attractive due to its simplicity, low cost and compactness. This optical sensor has been used so far, in different configuration such as for sensing displacement induced by different parameters. In this paper we report a compact optical sensor consisting of a semiconductor laser coupled to an external cavity. Theoretical analysis of the self- mixing interference for optical sensing applications is given for moderate optical feedback case. A comparison is made with our experimental observations. Experimental results are in good agreement with the simulated power modulation based on self-mixing interference theory. Displacements as small as 10-4 nm have been measured using this sensor. The developed sensor showed a fringe sensitivity of one fringe per 400nm displacement for reflector distance of around 10cms. The sensor has also been tested for magnetic field and temperature induced displacement measurements.
Resumo:
In this paper, we address a scheduling problem for minimizing total weighted flowtime, observed in automobile gear manufacturing. Specifically, the bottleneck operation of the pre-heat treatment stage of gear manufacturing process has been dealt with in scheduling. Many real-life scenarios like unequal release times, sequence dependent setup times, and machine eligibility restrictions have been considered. A mathematical model taking into account dynamic starting conditions has been proposed. The problem is derived to be NP-hard. To approach the problem, a few heuristic algorithms have been proposed. Based on planned computational experiments, the performance of the proposed heuristic algorithms is evaluated: (a) in comparison with optimal solution for small-size problem instances and (b) in comparison with the estimated optimal solution for large-size problem instances. Extensive computational analyses reveal that the proposed heuristic algorithms are capable of consistently yielding near-statistically estimated optimal solutions in a reasonable computational time.