83 resultados para Semi-bilingual dictionary
Resumo:
The undrained shear strength of remoulded soils is of great concern in geotechnical engineering applications. This study aims to develop a reliable approach for determining the undrained shear strength of remoulded fine-grained soils, through the use of index test results, at both the plastic and semi-solid states of consistency. Experimental investigation and subsequent analysis involving a number of fine-grained soils of widely varying plasticity and geological origin have led to a two-parameter linear model of the relationship between logarithm of remoulded undrained shear strength and liquidity index. The numerical values of the parameters are found to be dependent to a lesser extent on the soil group and to a greater extent on the soil state. Based on the values of regression coefficient, ranking index and ranking distance, it seems that the relationship represents the experimental results well. It may be pointed out that the possibility of such a relationship in the semi-solid state of a soil has not been explored in the past. It is also shown that the shear strength at the plastic limit is about 32-34 times that at the liquid limit.
Resumo:
The undrained shear strength of remoulded soils is of great concern in geotechnical engineering applications. This study aims to develop a reliable approach for determining the undrained shear strength of remoulded fine-grained soils, through the use of index test results, at both the plastic and semi-solid states of consistency. Experimental investigation and subsequent analysis involving a number of fine-grained soils of widely varying plasticity and geological origin have led to a two-parameter linear model of the relationship between logarithm of remoulded undrained shear strength and liquidity index. The numerical values of the parameters are found to be dependent to a lesser extent on the soil group and to a greater extent on the soil state. Based on the values of regression coefficient, ranking index and ranking distance, it seems that the relationship represents the experimental results well. It may be pointed out that the possibility of such a relationship in the semi-solid state of a soil has not been explored in the past. It is also shown that the shear strength at the plastic limit is about 32–34 times that at the liquid limit.
Resumo:
Rheological behavior of semi-solid slurries forms the backbone of semi-solid processing of metallic alloys. In particular, the effects of several process and metallurgical parameters such as shear rate, shear time, temperature, rest time and size, distribution and morphology of the primary phase on the viscosity of the slurry needs in-depth characterization. In the present work, rheological behaviour of the semisolid aluminium alloy (A356) slurry is investigated by using a high temperature Searle type Rheometer using concentric cylinders. Three different types of experiment are carried out: isothermal test, continuous cooling test and steady state test. Continuous decrease in viscosity is observed with increasing shear rate at a fixed temperature (isothermal test). It is also found that the viscosity increases with decreasing temperature for a particular shear rate due to increasing solid fraction (continuous cooling test). Thixotropic nature of the slurry is confirmed from the hysteresis loops obtained during experimentation. Time dependence of slurry viscosity has been evaluated from the steady state tests. After a longer shearing time under isothermal conditions the starting dendritic structure of the said alloy is transformed into globular grains due to abrasion, agglomeration, welding and ripening.
Resumo:
A phase field modelling approach is implemented in the present study towards simulation of microstructure evolution during cooling slope semi solid slurry generation process of A380 Aluminium alloy. First, experiments are performed to evaluate the number of seeds required within the simulation domain to simulate near spherical microstructure formation, occurs during cooling slope processing of the melt. Subsequently, microstructure evolution is studied employing a phase field method. Simulations are performed to understand the effect of cooling rate on the slurry microstructure. Encouraging results are obtained from the simulation studies which are validated by experimental observations. The results obtained from mesoscopic phase field simulations are grain size, grain density, degree of sphericity of the evolving primary Al phase and the amount of solid fraction present within the slurry at different time frames. Effect of grain refinement also has been studied with an aim of improving the slurry microstructure further. Insight into the process has been obtained from the numerical findings, which are found to be useful for process control.
Resumo:
The microstructure of an austenitic SS 304L rapidly quenched from its semi-solid state shows a unique annular austenitic ring in between the core of each globule and its ferritic outer layer. On the basis of experimental results and microstructural analysis, it is proposed that the ring is formed as a result of preferential austenitic phase nucleation in a small quantity of liquid entrapped between adjacent solid globules during rapid quenching, in spite of the fact that ferrite is the thermodynamically stable phase for the alloy. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
In the present work, effect of pouring temperature (650 degrees C, 655 degrees C, and 660 degrees C) on semi-solid microstructure evolution of in-situ magnesium silicide (Mg2Si) reinforced aluminum (Al) alloy composite has been studied. The shear force exerted by the cooling slope during gravity driven flow of the melt facilitates the formation of near spherical primary Mg2Si and primary Al grains. Shear driven melt flow along the cooling slope and grain fragmentation have been identified as the responsible mechanisms for refinement of primary Mg2Si and Al grains with improved sphericity. Results show that, while flowing down the cooling slope, morphology of primary Mg2Si and primary Al transformed gradually from coarse dendritic to mixture of near spherical particles, rosettes, and degenerated dendrites. In terms of minimum grain size and maximum sphericity, 650 degrees C has been identified as the ideal pouring temperature for the cooling slope semi-solid processing of present Al alloy composite. Formation of spheroidal grains with homogeneous distribution of reinforcing phase (Mg2Si) improves the isotropic property of the said composite, which is desirable in most of the engineering applications.
Resumo:
To perform super resolution of low resolution images, state-of-the-art methods are based on learning a pair of lowresolution and high-resolution dictionaries from multiple images. These trained dictionaries are used to replace patches in lowresolution image with appropriate matching patches from the high-resolution dictionary. In this paper we propose using a single common image as dictionary, in conjunction with approximate nearest neighbour fields (ANNF) to perform super resolution (SR). By using a common source image, we are able to bypass the learning phase and also able to reduce the dictionary from a collection of hundreds of images to a single image. By adapting recent developments in ANNF computation, to suit super-resolution, we are able to perform much faster and accurate SR than existing techniques. To establish this claim, we compare the proposed algorithm against various state-of-the-art algorithms, and show that we are able to achieve b etter and faster reconstruction without any training.
Resumo:
User authentication is essential for accessing computing resources, network resources, email accounts, online portals etc. To authenticate a user, system stores user credentials (user id and password pair) in system. It has been an interested field problem to discover user password from a system and similarly protecting them against any such possible attack. In this work we show that passwords are still vulnerable to hash chain based and efficient dictionary attacks. Human generated passwords use some identifiable patterns. We have analysed a sample of 19 million passwords, of different lengths, available online and studied the distribution of the symbols in the password strings. We show that the distribution of symbols in user passwords is affected by the native language of the user. From symbol distributions we can build smart and efficient dictionaries, which are smaller in size and their coverage of plausible passwords from Key-space is large. These smart dictionaries make dictionary based attacks practical.
Resumo:
This article considers a semi-infinite mathematical programming problem with equilibrium constraints (SIMPEC) defined as a semi-infinite mathematical programming problem with complementarity constraints. We establish necessary and sufficient optimality conditions for the (SIMPEC). We also formulate Wolfe- and Mond-Weir-type dual models for (SIMPEC) and establish weak, strong and strict converse duality theorems for (SIMPEC) and the corresponding dual problems under invexity assumptions.
Resumo:
The current study presents an algorithm to retrieve surface Soil Moisture (SM) from multi-temporal Synthetic Aperture Radar (SAR) data. The developed algorithm is based on the Cumulative Density Function (CDF) transformation of multi-temporal RADARSAT-2 backscatter coefficient (BC) to obtain relative SM values, and then converts relative SM values into absolute SM values using soil information. The algorithm is tested in a semi-arid tropical region in South India using 30 satellite images of RADARSAT-2, SMOS L2 SM products, and 1262 SM field measurements in 50 plots spanning over 4 years. The validation with the field data showed the ability of the developed algorithm to retrieve SM with RMSE ranging from 0.02 to 0.06 m(3)/m(3) for the majority of plots. Comparison with the SMOS SM showed a good temporal behaviour with RMSE of approximately 0.05 m(3)/m(3) and a correlation coefficient of approximately 0.9. The developed model is compared and found to be better than the change detection and delta index model. The approach does not require calibration of any parameter to obtain relative SM and hence can easily be extended to any region having time series of SAR data available.
Resumo:
Clinical microscopy is a versatile diagnostic platform used for diagnosis of a multitude of diseases. In the recent past, many microfluidics based point-of-care diagnostic devices have been developed, which serve as alternatives to microscopy. However, these point-of-care devices are not as multi-functional and versatile as clinical microscopy. With the use of custom designed optics and microfluidics, we have developed a versatile microscopy-based cellular diagnostic platform, which can be used at the point of care. The microscopy platform presented here is capable of detecting infections of very low parasitemia level (in a very small quantity of sample), without the use of any additional computational hardware. Such a cost-effective and portable diagnostic device, would greatly impact the quality of health care available to people living in rural locations of the world. Apart from clinical diagnostics, it's applicability to field research in environmental microbiology has also been outlined. (C) 2015 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License.
Resumo:
In big data image/video analytics, we encounter the problem of learning an over-complete dictionary for sparse representation from a large training dataset, which cannot be processed at once because of storage and computational constraints. To tackle the problem of dictionary learning in such scenarios, we propose an algorithm that exploits the inherent clustered structure of the training data and make use of a divide-and-conquer approach. The fundamental idea behind the algorithm is to partition the training dataset into smaller clusters, and learn local dictionaries for each cluster. Subsequently, the local dictionaries are merged to form a global dictionary. Merging is done by solving another dictionary learning problem on the atoms of the locally trained dictionaries. This algorithm is referred to as the split-and-merge algorithm. We show that the proposed algorithm is efficient in its usage of memory and computational complexity, and performs on par with the standard learning strategy, which operates on the entire data at a time. As an application, we consider the problem of image denoising. We present a comparative analysis of our algorithm with the standard learning techniques that use the entire database at a time, in terms of training and denoising performance. We observe that the split-and-merge algorithm results in a remarkable reduction of training time, without significantly affecting the denoising performance.
Resumo:
The standard procedure of groundwater resource estimation in India till date is based on the specific yield parameters of each rock type (lithology) derived through pumping test analysis. Using the change in groundwater level, specific yield, and area of influence, groundwater storage change could be estimated. However, terrain conditions in the form of geomorphological variations have an important bearing on the net groundwater recharge. In this study, an attempt was made to use both lithology and geomorphology as input variables to estimate the recharge from different sources in each lithology unit influenced by the geomorphic conditions (lith-geom), season wise separately. The study provided a methodological approach for an evaluation of groundwater in a semi-arid hard rock terrain in Tirunelveli, Tamil Nadu, India. While characterizing the gneissic rock, it was found that the geomorphologic variations in the gneissic rock due to weathering and deposition behaved differently with respect to aquifer recharge. The three different geomorphic units identified in gneissic rock (pediplain shallow weathered (PPS), pediplain moderate weathered (PPM), and buried pediplain moderate (BPM)) showed a significant variation in recharge conditions among themselves. It was found from the study that Peninsular gneiss gives a net recharge value of 0.13 m/year/unit area when considered as a single unit w.r.t. lithology, whereas the same area considered with lith-geom classes gives recharge values between 0.1 and 0.41 m/year presenting a different assessment. It is also found from this study that the stage of development (SOD) for each lith-geom unit in Peninsular gneiss varies from 168 to 230 %, whereas the SOD is 223 % for the lithology as a single unit.
Resumo:
The present work discusses the findings obtained from simulations of semi solid die filling of a steering knuckle, prior to actual component development using in-house developed rheo pressure die casting system. Die filling capability of A356 Al alloy at semi-solid state has been investigated using commercial software Flow-3Dcast to optimise the pouring temperature of semi-solid slurry into the die cavity, while all other variables such as gating design, die preheat temperature and injection velocity are kept constant based on the prior knowledge obtained from trial numerical simulations and experimentation. Efforts have been made to nullify the essence of costly, time consuming experiments towards obtaining high-quality castings out of the findings obtained from numerical simulations. The optimum pouring temperature identified in the present study is 610 A degrees C, which facilitates smoother slurry flow, minimum surface defect concentration, uniform temperature field and solid fraction distribution within the component cavity.