132 resultados para Sample selection
Resumo:
Packet forwarding is a memory-intensive application requiring multiple accesses through a trie structure. The efficiency of a cache for this application critically depends on the placement function to reduce conflict misses. Traditional placement functions use a one-level mapping that naively partitions trie-nodes into cache sets. However, as a significant percentage of trie nodes are not useful, these schemes suffer from a non-uniform distribution of useful nodes to sets. This in turn results in increased conflict misses. Newer organizations such as variable associativity caches achieve flexibility in placement at the expense of increased hit-latency. This makes them unsuitable for L1 caches.We propose a novel two-level mapping framework that retains the hit-latency of one-level mapping yet incurs fewer conflict misses. This is achieved by introducing a secondlevel mapping which reorganizes the nodes in the naive initial partitions into refined partitions with near-uniform distribution of nodes. Further as this remapping is accomplished by simply adapting the index bits to a given routing table the hit-latency is not affected. We propose three new schemes which result in up to 16% reduction in the number of misses and 13% speedup in memory access time. In comparison, an XOR-based placement scheme known to perform extremely well for general purpose architectures, can obtain up to 2% speedup in memory access time.
Resumo:
In this work, we explore simultaneous design and material selection by posing it as an optimization problem. The underlying principles for our approach are Ashby's material selection procedure and structural optimization. For the simplicity and ease of initial implementation of the general procedure, truss structures under static load are considered in this work in view of maximum stiffness, minimum weight/cost and safety against failure. Along the lines of Ashby's material indices, a new design index is derived for trusses. This helps in choosing the most suitable material for any design of a truss. Using this, both the design space and material database are searched simultaneously using optimization algorithms. The important feature of our approach is that the formulated optimization problem is continuous even though the material selection is an inherently discrete problem.
Resumo:
VLBI observations at 6 cm reported of several weak radio cores of normal and Seyfert galaxies, of radio sources which have jets or a head tail morphology as well as some stronger cores of flat spectrum galaxies from the NRAO-Bonn "S 4", survey. Nearly all sources were detected at an angular resolution of approximately 15 milli arc s. Some of the sources are resolved at this level.
Resumo:
In this paper, we study different methods for prototype selection for recognizing handwritten characters of Tamil script. In the first method, cumulative pairwise- distances of the training samples of a given class are used to select prototypes. In the second method, cumulative distance to allographs of different orientation is used as a criterion to decide if the sample is representative of the group. The latter method is presumed to offset the possible orientation effect. This method still uses fixed number of prototypes for each of the classes. Finally, a prototype set growing algorithm is proposed, with a view to better model the differences in complexity of different character classes. The proposed algorithms are tested and compared for both writer independent and writer adaptation scenarios.
Resumo:
Aqueous solutions of Al and Mg nitrates have been spray pyrolysed at 673 K to synthesize powders with compositions varying between MgO and MgAl2O4. This has been carried out with the aim of studying phase selection and phase evolution in this system. The powders have been subsequently heat treated and the sequence of phases characterised by X-ray diffraction and transmission electron microscopy. Metastable extensions of the different phase fields have been calculated based on functions which predict the equilibrium phase diagram accurately. The appearance of phases is closely related to the temperature and to the non-stoichiometry in different compositional ranges of the system. The sequence of phase evolution has been correlated to the thermodynamics of nucleation in the system.
Resumo:
Receive antenna selection (AS) has been shown to maintain the diversity benefits of multiple antennas while potentially reducing hardware costs. However, the promised diversity gains of receive AS depend on the assumptions of perfect channel knowledge at the receiver and slowly time-varying fading. By explicitly accounting for practical constraints imposed by the next-generation wireless standards such as training, packetization and antenna switching time, we propose a single receive AS method for time-varying fading channels. The method exploits the low training overhead and accuracy possible from the use of discrete prolate spheroidal (DPS) sequences based reduced rank subspace projection techniques. It only requires knowledge of the Doppler bandwidth, and does not require detailed correlation knowledge. Closed-form expressions for the channel prediction and estimation error as well as symbol error probability (SEP) of M-ary phase-shift keying (MPSK) for symbol-by-symbol receive AS are also derived. It is shown that the proposed AS scheme, after accounting for the practical limitations mentioned above, outperforms the ideal conventional single-input single-output (SISO) system with perfect CSI and no AS at the receiver and AS with conventional estimation based on complex exponential basis functions.
Resumo:
In a communication system in which K nodes communicate with a central sink node, the following problem of selection often occurs. Each node maintains a preference number called a metric, which is not known to other nodes. The sink node must find the `best' node with the largest metric. The local nature of the metrics requires the selection process to be distributed. Further, the selection needs to be fast in order to increase the fraction of time available for data transmission using the selected node and to handle time-varying environments. While several selection schemes have been proposed in the literature, each has its own shortcomings. We propose a novel, distributed selection scheme that generalizes the best features of the timer scheme, which requires minimal feedback but does not guarantee successful selection, and the splitting scheme, which requires more feedback but guarantees successful selection. The proposed scheme introduces several new ideas into the design of the timer and splitting schemes. It explicitly accounts for feedback overheads and guarantees selection of the best node. We analyze and optimize the performance of the scheme and show that it is scalable, reliable, and fast. We also present new insights about the optimal timer scheme.
Resumo:
We implement two energy models that accurately and comprehensively estimates the system energy cost and communication energy cost for using Bluetooth and Wi-Fi interfaces. The energy models running on a system is used to smartly pick the most energy optimal network interface so that data transfer between two end points is maximized.
Resumo:
Our work is motivated by geographical forwarding of sporadic alarm packets to a base station in a wireless sensor network (WSN), where the nodes are sleep-wake cycling periodically and asynchronously. We seek to develop local forwarding algorithms that can be tuned so as to tradeoff the end-to-end delay against a total cost, such as the hop count or total energy. Our approach is to solve, at each forwarding node enroute to the sink, the local forwarding problem of minimizing one-hop waiting delay subject to a lower bound constraint on a suitable reward offered by the next-hop relay; the constraint serves to tune the tradeoff. The reward metric used for the local problem is based on the end-to-end total cost objective (for instance, when the total cost is hop count, we choose to use the progress toward sink made by a relay as the reward). The forwarding node, to begin with, is uncertain about the number of relays, their wake-up times, and the reward values, but knows the probability distributions of these quantities. At each relay wake-up instant, when a relay reveals its reward value, the forwarding node's problem is to forward the packet or to wait for further relays to wake-up. In terms of the operations research literature, our work can be considered as a variant of the asset selling problem. We formulate our local forwarding problem as a partially observable Markov decision process (POMDP) and obtain inner and outer bounds for the optimal policy. Motivated by the computational complexity involved in the policies derived out of these bounds, we formulate an alternate simplified model, the optimal policy for which is a simple threshold rule. We provide simulation results to compare the performance of the inner and outer bound policies against the simple policy, and also against the optimal policy when the source knows the exact number of relays. Observing the good performance and the ease of implementation of the simple policy, we apply it to our motivating problem, i.e., local geographical routing of sporadic alarm packets in a large WSN. We compare the end-to-end performance (i.e., average total delay and average total cost) obtained by the simple policy, when used for local geographical forwarding, against that obtained by the globally optimal forwarding algorithm proposed by Kim et al. 1].
Resumo:
Savitzky-Golay (S-G) filters are finite impulse response lowpass filters obtained while smoothing data using a local least-squares (LS) polynomial approximation. Savitzky and Golay proved in their hallmark paper that local LS fitting of polynomials and their evaluation at the mid-point of the approximation interval is equivalent to filtering with a fixed impulse response. The problem that we address here is, ``how to choose a pointwise minimum mean squared error (MMSE) S-G filter length or order for smoothing, while preserving the temporal structure of a time-varying signal.'' We solve the bias-variance tradeoff involved in the MMSE optimization using Stein's unbiased risk estimator (SURE). We observe that the 3-dB cutoff frequency of the SURE-optimal S-G filter is higher where the signal varies fast locally, and vice versa, essentially enabling us to suitably trade off the bias and variance, thereby resulting in near-MMSE performance. At low signal-to-noise ratios (SNRs), it is seen that the adaptive filter length algorithm performance improves by incorporating a regularization term in the SURE objective function. We consider the algorithm performance on real-world electrocardiogram (ECG) signals. The results exhibit considerable SNR improvement. Noise performance analysis shows that the proposed algorithms are comparable, and in some cases, better than some standard denoising techniques available in the literature.
Resumo:
In this paper, we develop a game theoretic approach for clustering features in a learning problem. Feature clustering can serve as an important preprocessing step in many problems such as feature selection, dimensionality reduction, etc. In this approach, we view features as rational players of a coalitional game where they form coalitions (or clusters) among themselves in order to maximize their individual payoffs. We show how Nash Stable Partition (NSP), a well known concept in the coalitional game theory, provides a natural way of clustering features. Through this approach, one can obtain some desirable properties of the clusters by choosing appropriate payoff functions. For a small number of features, the NSP based clustering can be found by solving an integer linear program (ILP). However, for large number of features, the ILP based approach does not scale well and hence we propose a hierarchical approach. Interestingly, a key result that we prove on the equivalence between a k-size NSP of a coalitional game and minimum k-cut of an appropriately constructed graph comes in handy for large scale problems. In this paper, we use feature selection problem (in a classification setting) as a running example to illustrate our approach. We conduct experiments to illustrate the efficacy of our approach.
Resumo:
Opportunistic selection is a practically appealing technique that is used in multi-node wireless systems to maximize throughput, implement proportional fairness, etc. However, selection is challenging since the information about a node's channel gains is often available only locally at each node and not centrally. We propose a novel multiple access-based distributed selection scheme that generalizes the best features of the timer scheme, which requires minimal feedback but does not always guarantee successful selection, and the fast splitting scheme, which requires more feedback but guarantees successful selection. The proposed scheme's design explicitly accounts for feedback time overheads unlike the conventional splitting scheme and guarantees selection of the user with the highest metric unlike the timer scheme. We analyze and minimize the average time including feedback required by the scheme to select. With feedback overheads, the proposed scheme is scalable and considerably faster than several schemes proposed in the literature. Furthermore, the gains increase as the feedback overhead increases.
Resumo:
Training for receive antenna selection (AS) differs from that for conventional multiple antenna systems because of the limited hardware usage inherent in AS. We analyze and optimize the performance of a novel energy-efficient training method tailored for receive AS. In it, the transmitter sends not only pilots that enable the selection process, but also an extra pilot that leads to accurate channel estimates for the selected antenna that actually receives data. For time-varying channels, we propose a novel antenna selection rule and prove that it minimizes the symbol error probability (SEP). We also derive closed-form expressions for the SEP of MPSK, and show that the considered training method is significantly more energy-efficient than the conventional AS training method.