260 resultados para SUBSTRATE-TEMPERATURE


Relevância:

40.00% 40.00%

Publicador:

Resumo:

This research article describes the large scale fabrication of ZnO nanorods of various shapes on Si(100) substrate, by using metalorganic precursor of Zn in solutions with microwave as the source of energy. This is a low temperature, environmental friendly and rapid thin film deposition process, where ZnO nanorods (1-3 mu m length) were grown only in 1-5 min of microwave irradiation. All as-synthesized nanorods are of single crystalline grown along the < 0001 > crystallographic direction. The coated nanorods were found to be highly dense having a thickness of similar to 1-3 mu m over the entire area 20 mm x 20 mm of the substrate. The ZnO thin film comprising of nanorods exhibits good adhesion with the substrate. A possible mechanism for the initial nucleation and growth of ZnO is discussed. A cross over from a strong visible light emission to an enhanced UV emission is observed, when the nature of the surfactants are varied from polymeric to ionic and nonionic. The position of the chromaticity coordinates in yellow region of the color space gives an impression of white light generation from these coatings by exciting with a blue laser.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Although ultrathin Au nanowires (similar to 2 nm diameter) are expected to demonstrate several interesting properties, their extreme fragility has hampered their use in potential applications. One way to improve the stability is to grow them on substrates; however, there is no general method to grow these wires over large areas. The existing methods suffer from poor coverage and associated formation of larger nanoparticles on the substrate. Herein, we demonstrate a room temperature method for growth of these nanowires with high coverage over large areas by in situ functionalization of the substrate. Using control experiments, we demonstrate that an in situ functionalization of the substrate is the key step in controlling the areal density of the wires on the substrate. We show that this strategy works for a variety of substrates ranging like graphene, borosil glass, Kapton, and oxide supports. We present initial results on catalysis using the wires grown on alumina and silica beads and also extend the method to lithography-free device fabrication. This method is general and may be extended to grow ultrathin Au nanowires on a variety of substrates for other applications.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We report the morphology-controlled synthesis of aluminium (Al) doped zinc oxide (ZnO) nanosheets on Al alloy (AA-6061) substrate by a low-temperature solution growth method without using any external seed layer and doping process. Doped ZnO nanosheets were obtained at low temperatures of 60-90 degrees C for the growth time of 4 hours. In addition to the synthesis, the effect of growth temperature on the morphological changes of ZnO nanosheets is also reported. As-synthesized nanosheets are characterized by FE-SEM, XRD TEM and XPS for their morphology, crystallinity, microstructure and compositional analysis respectively. The doping of Al in ZnO nanosheets is confirmed with EDXS and XPS. Furthermore, the effect of growth temperature on the morphological changes was studied in the range of 50 to 95 degrees C. It was found that the thickness and height of the nanosheets varied with respect to the growth temperature. The study has given an important insight into the structural morphology with respect to the growth temperature, which in turn enabled us to determine the growth temperature window for the ZnO nanosheets. These Al doped ZnO nanosheets have potential application possibilities in gas sensors, solar cells and energy harvesting devices like nanogenerators.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A novel flexible alloy substrate (Phynox, 50 mm thick) was used for the synthesis of zinc oxide (ZnO) nanorods via a low-temperature solution growth method. The growth of ZnO nanorods was observed over a low temperature range of 60-90 degrees C for a growth duration of 4 hours. The as-synthesized nanorods were characterized using field-emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) for their morphology, crystallinity, microstructure and composition. The as-grown ZnO nanorods were observed to be relatively vertical to the substrate. However, the morphology of the ZnO nanorods in terms of their length, diameter and aspect ratio was found to vary with the growth temperature. The morphological variation was mainly due to the effects of the various relative growth rates observed at the different growth temperatures. The growth temperature influenced ZnO nanorods were also analyzed for their wetting (either hydrophobic or hydrophilic) properties. After carrying out multiple wetting behaviour analyses, it has been found that the as-synthesized ZnO nanorods are hydrophobic in nature. The ZnO nanorods have potential application possibilities in self-cleaning devices, sensors and actuators as well as energy harvesters such as nanogenerators.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In an attempt to identify the arginine residue involved in binding of the carboxylate group of serine to mammalian serine hydroxymethyltransferase, a highly conserved Arg-401 was mutated to Ala by site-directed mutagenesis. The mutant enzyme had a characteristic visible absorbance at 425 nm indicative of the presence of bound pyridoxal 5'-phosphate as an internal aldimine with a lysine residue. However, it had only 0.003% of the catalytic activity of the wild-type enzyme. It was also unable to perform reactions with glycine, beta-phenylserine or d-alanine, suggesting that the binding of these substrates to the mutant enzyme was affected. This was also evident from the interaction of amino-oxyacetic acid, which was very slow (8.4x10(-4) s-1 at 50 microM) for the R401A mutant enzyme compared with the wild-type enzyme (44.6 s-1 at 50 microM). In contrast, methoxyamine (which lacks the carboxy group) reacted with the mutant enzyme (1.72 s-1 at 250 microM) more rapidly than the wild-type enzyme (0.2 s-1 at 250 microM). Further, both wild-type and the mutant enzymes were capable of forming unique quinonoid intermediates absorbing at 440 and 464 nm on interaction with thiosemicarbazide, which also does not have a carboxy group. These results implicate Arg-401 in the binding of the substrate carboxy group. In addition, gel-filtration profiles of the apoenzyme and the reconstituted holoenzyme of R401A and the wild-type enzyme showed that the mutant enzyme remained in a tetrameric form even when the cofactor had been removed. However, the wild-type enzyme underwent partial dissociation to a dimer, suggesting that the oligomeric structure was rendered more stable by the mutation of Arg-401. The increased stability of the mutant enzyme was also reflected in the higher apparent melting temperature (Tm) (61 degrees C) than that of the wild-type enzyme (56 degrees C). The addition of serine or serinamide did not change the apparent Tm of R401A mutant enzyme. These results suggest that the mutant enzyme might be in a permanently 'open' form and the increased apparent Tm could be due to enhanced subunit interactions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tin monosulfide (SnS) films with varying distance between the source and substrate (DSS) were prepared by the thermal evaporation technique at a temperature of 300 degrees C to investigate the effect of the DSS on the physical properties. The physical properties of the as-deposited films are strongly influenced by the variation of DSS. The thickness, Sn to S at.% ratio, grain size, and root mean square (rms) roughness of the films decreased with the increase of DSS. The films grown at DSS = 10 and 15 cm exhibited nearly single-crystalline nature with low electrical resistivity. From Hall-effect measurements, it is observed that the films grown at DSS <= 15 cm have p-type conduction and the films grown at higher distances have n-type conduction due to the variation of the Sn/S ratio. The films grown at DSS = 15 cm showed higher optical band gap of 1.36 eV as compared with the films grown at other distances. The effect of the DSS on the physical properties of SnS films is discussed and reported.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the foremost design considerations in microelectronics miniaturization is the use of embedded passives which provide practical solution. In a typical circuit, over 80 percent of the electronic components are passives such as resistors, inductors, and capacitors that could take up to almost 50 percent of the entire printed circuit board area. By integrating passive components within the substrate instead of being on the surface, embedded passives reduce the system real estate, eliminate the need for discrete and assembly, enhance electrical performance and reliability, and potentially reduce the overall cost. Moreover, it is lead free. Even with these advantages, embedded passive technology is at a relatively immature stage and more characterization and optimization are needed for practical applications leading to its commercialization.This paper presents an entire process from design and fabrication to electrical characterization and reliability test of embedded passives on multilayered microvia organic substrate. Two test vehicles focusing on resistors and capacitors have been designed and fabricated. Embedded capacitors in this study are made with polymer/ceramic nanocomposite (BaTiO3) material to take advantage of low processing temperature of polymers and relatively high dielectric constant of ceramics and the values of these capacitors range from 50 pF to 1.5 nF with capacitance per area of approximately 1.5 nF/cm(2). Limited high frequency measurement of these capacitors was performed. Furthermore, reliability assessments of thermal shock and temperature humidity tests based on JEDEC standards were carried out. Resistors used in this work have been of three types: 1) carbon ink based polymer thick film (PTF), 2) resistor foils with known sheet resistivities which are laminated to printed wiring board (PWB) during a sequential build-up (SBU) process and 3) thin-film resistor plating by electroless method. Realization of embedded resistors on conventional board-level high-loss epoxy (similar to 0.015 at 1 GHz) and proposed low-loss BCB dielectric (similar to 0.0008 at > 40 GHz) has been explored in this study. Ni-P and Ni-W-P alloys were plated using conventional electroless plating, and NiCr and NiCrAlSi foils were used for the foil transfer process. For the first time, Benzocyclobutene (BCB) has been proposed as a board level dielectric for advanced System-on-Package (SOP) module primarily due to its attractive low-loss (for RF application) and thin film (for high density wiring) properties.Although embedded passives are more reliable by eliminating solder joint interconnects, they also introduce other concerns such as cracks, delamination and component instability. More layers may be needed to accommodate the embedded passives, and various materials within the substrate may cause significant thermo -mechanical stress due to coefficient of thermal expansion (CTE) mismatch. In this work, numerical models of embedded capacitors have been developed to qualitatively examine the effects of process conditions and electrical performance due to thermo-mechanical deformations.Also, a prototype working product with the board level design including features of embedded resistors and capacitors are underway. Preliminary results of these are presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High temperature load controlled fatigue, hot tensile and accelerated creep properties of thermal barrier coated (TBC) Superni C263 alloy used as a candidate material in combustor liner of aero engines are highlighted in this paper. Acoustic emission technique has been utilised to characterise the ductile-brittle transition teperature the bond coat. Results revealed that the DBTT (ductile to brittle transition temperature) of this bond coat is around 923 K, which is in close proximity to the value reported for CoCrAlY type of bond coat. Finite element technique, used for analysing the equivalent stresses in the bond coat well within the elastic limit, revealed the highest order of equivalent stress at 1073 K as the bond coat is ductile above 923 K. The endurance limit in fatigue and the life of TBC coated composite under accelerated creep conditions are substantially higher than those of the substrate material. Fractographic features at high stresses under fatigue showed intergranular cleavage whereas those at low stresses were transgranular and ductile in nature. Delamination of the bond coat and spallation of the TBC at high stresses during fatigue was evident. Unlike in the case of fatigue, the mode of fracture in the substrate at very high stresses was transgranular whereas that at low stresses was intergranular in creep.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Titanium nitride films of a thickness of similar to 1.5 mu m were deposited on amorphous and crystalline substrates by DC reactive magnetron sputtering at ambient temperature with 100% nitrogen in the sputter gas. The growth of nanostructured, i.e. crystalline nano-grain sized, films at ambient temperature is demonstrated. The microstructure of the films grown on crystalline substrates reveals a larger grain size/crystallite size than that of the films deposited on amorphous substrates. Specular reflectance measurements on films deposited on different substrates indicate that the position of the Ti-N 2s band at 2.33 eV is substrate-dependent, indicating substrate-mediated stoichiometry. This clearly demonstrates that not only structure and microstructure, but also chemical composition of the films is substrate-influenced. The films deposited on amorphous substrates display lower hardness and modulus values than the films deposited on crystalline substrates, with the highest value of hardness being 19 GPa on a lanthanum aluminate substrate. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Photoluminescence (PL) of high quality GaN epitaxial layer grown on beta-Si3N4/Si (1 1 1) substrate using nitridation-annealing-nitridation method by plasma-assisted molecular beam epitaxy (PA-MBE) was investigated in the range of 5-300 K. Crystallinity of GaN epilayers was evaluated by high resolution X-ray diffraction (HRXRD) and surface morphology by Atomic Force Microscopy (AFM) and high resolution scanning electron microscopy (HRSEM). The temperature-dependent photoluminescence spectra showed an anomalous behaviour with an `S-like' shape of free exciton (FX) emission peaks. Distant shallow donor-acceptor pair (DAP) line peak at approximately 3.285 eV was also observed at 5 K, followed by LO replica sidebands separated by 91 meV. The activation energy of the free exciton for GaN epilayers was also evaluated to be similar to 27.8 +/- 0.7 meV from the temperature-dependent PL studies. Low carrier concentrations were observed similar to 4.5 +/- 2 x 10(17) Cm-3 by measurements and it indicates the silicon nitride layer, which not only acts as a growth buffer layer, but also effectively prevents Si diffusion from the substrate to GaN epilayers. The absence of yellow band emission at around 2.2 eV signifies the high quality of film. The tensile stress in GaN film calculated by the thermal stress model agrees very well with that derived from Raman spectroscopy. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article provides a detailed computational analysis of the reaction of dense nanofilms and the heat transfer characteristics on a composite substrate. Although traditional energetic compounds based on organic materials have similar energy per unit weight, non-organic material in nanofilm configuration offers much higher energy density and higher flame speed. The reaction of a multilayer thin film of aluminum and copper oxide has been studied by varying the substrate material and thicknesses. The numerical analysis of the thermal transport of the reacting film deposited on the substrate combined a hybrid approach in which a traditional two-dimensional black box theory was used in conjunction with the sandwich model to estimate the appropriate heat flux on the substrate accounting for the heat loss to the surroundings. A procedure to estimate this heat flux using stoichiometric calculations is provided. This work highlights two important findings. One is that there is very little difference in the temperature profiles between a single substrate of silica and a composite substrate of silicon silica. Secondly, with increase in substrate thickness, the quenching effect is progressively diminished at a given speed. These findings show that the composite substrate is effective and that the average speed and quenching of flames depend on the thickness of the silica substrate, and can be controlled by a careful choice of the substrate configuration. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report the structural and optical properties of a-plane GaN film grown on r-plane sapphire substrate by plasma-assisted molecular beam epitaxy. High resolution X-ray diffraction was used to determine the out-of-plane and in-plane epitaxial relation of a-plane GaN to r-plane sapphire. Low-temperature photoluminescence emission was found to be dominated by basal stacking faults along with near-band emission. Raman spectroscopy shows that the a-GaN film is of reasonably good quality and compressively strained. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An attempt has been made to study the film-substrate interface by using a sensitive, non- conventional tool. Because of the prospective use of gate oxide in MOSFET devices, we have chosen to study alumina films grown on silicon. Film-substrate interface of alumina grown by MOCVD on Si(100) was studied systematically using spectroscopic ellipsometry in the range 1.5-5.0 eV, supported by cross-sectional SEM, and SIMS. The (ε1,ε2) versus energy data obtained for films grown at 600°C, 700°C, and 750°C were modeled to fit a substrate/interface/film “sandwich”. The experimental results reveal (as may be expected) that the nature of the substrate -film interface depends strongly on the growth temperature. The simulated (ε1,ε2) patterns are in excellent agreement with observed ellipsometric data. The MOCVD precursors results the presence of carbon in the films. Theoretical simulation was able to account for the ellipsometry data by invoking the presence of “free” carbon in the alumina films.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have grown Ga deficient GaN epitaxial films on (0001) sapphire substrate by plasma-assisted molecular beam epitaxy and report the experimental evidence of room temperature ferromagnetic behavior. The observed yellow emission peak in room temperature photoluminescence spectra and the peak positioning at 300 cm(-1) in Raman spectra confirms the existence of Ga vacancies. The x-ray photoelectron spectroscopic measurements further confirmed the formation of Ga vacancies; since the N/Ga is found to be >1. The ferromagnetism is believed to originate from the polarization of the unpaired 2p electrons of N surrounding the Ga vacancy. (C) 2011 American Institute of Physics. [doi:10.1063/1.3654151]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Phase pure wurtzite GaN films were grown on Si (100) substrates by introducing a silicon nitride layer followed by low temperature GaN growth as buffer layers. GaN films grown directly on Si (100) were found to be phase mixtured, containing both cubic (beta) and hexagonal (alpha) modifications. The x-ray diffraction (XRD), scanning electron microscopy (SEM), photoluminescence (PL) spectroscopy studies reveal that the significant enhancement in the structural as well as in the optical properties of GaN films grown with silicon nitride buffer layer grown at 800 degrees C when compared to the samples grown in the absence of silicon nitride buffer layer and with silicon nitride buffer layer grown at 600 degrees C. Core-level photoelectron spectroscopy of Si(x)N(y) layers reveals the sources for superior qualities of GaN epilayers grown with the high temperature substrate nitridation process. The discussion has been carried out on the typical inverted rectification behavior exhibited by n-GaN/p-Si heterojunctions. Considerable modulation in the transport mechanism was observed with the nitridation conditions. The heterojunction fabricated with the sample of substrate nitridation at high temperature exhibited superior rectifying nature with reduced trap concentrations. Lowest ideality factors (similar to 1.5) were observed in the heterojunctions grown with high temperature substrate nitridation which is attributed to the recombination tunneling at the space charge region transport mechanism at lower voltages and at higher voltages space charge limited current conduction is the dominating transport mechanism. Whereas, thermally generated carrier tunneling and recombination tunneling are the dominating transport mechanisms in the heterojunctions grown without substrate nitridation and low temperature substrate nitridation, respectively. (C) 2011 American Institute of Physics. [doi:10.1063/1.3658867]