270 resultados para STARS: EVOLUTION
Resumo:
This brief introductory article summarizes key findings from experiments and from computer simulations concerning the dramatic changes that commonly occur adjacent to sliding interfaces. We conclude that a wide range of observed features depends on a few basic processes (plastic deformation, interactions with the environment (including the counterface) and mechanical mixing) and that sliding leads to flow patterns similar to those expected in fluid flow.
Resumo:
Various elements of an efficient and reliable 5k W wood gasifier system developed over the last ten years are described. The good performance obtained from the system is related to the careful design of its components and sub-systems. Results from extensive testing of gasifier prototypes at two national centres are discussed along with the experience gained in the field from their use at more than one hundred and fifty locations spread over five states in the country. Issues related to acceptance of the technology are also included. Improvements in design to extend the life, to reduce the cost, and to reduce the number of components are also discussed. A few variants of the design to meet the specific requirements of water pumping, power generation and to exploit specific site characteristics are presented.
Resumo:
The existence of a metastable miscibility gap has been indicated from the metastable phase diagram of the Zn-Sn system calculated using regular solution and Krupkowski's models. To validate this phenomenon experimentally, the entrained droplet technique was used to achieve high undercooling and to access the metastable regions. The microstructural analysis confirms the miscibility gap and the associated monotectic reaction. Evidence is also presented for a possible massive solidification of the undercooled melt.
Resumo:
We report here results from detailed timing and spectral studies of the high mass X-ray binary pulsar 4U 1538-52 over several binary periods using observations made with the Rossi X-ray Timing Explorer (RXTE) and BeppoSAX satellites. Pulse timing analysis with the 2003 RXTE data over two binary orbits confirms an eccentric orbit of the system. Combining the orbitial parameters determined from this observation with the earlier measurements we did not find any evidence of orbital decay in this X-ray binary. We have carried out orbital phase resolved spectroscopy to measure changes in the spectral parameters with orbital phase, particularly the absorption column density and the iron line flux. The RXTE-PCA spectra in the 3-20 keV energy range were fitted with a power law and a high energy cut-off along with a Gaussian line at similar to 6.4 keV, whereas the BeppoSAX spectra needed only a power law and Gaussian emission line at similar to 6.4keV in the restricted energy range of 0.3-10.0 keV. An absorption along the line of sight was included for both the RXTE and BeppoSAX data. The variation of the free spectral parameters over the binary orbit was investigated and we found that the variation of the column density of absorbing material in the line of sight with orbital phase is in reasonable agreement with a simple model of a spherically symmetric stellar wind from the companion star.
Resumo:
Magnetic susceptibility measurements on dilute solid-solutions LaNi1-xMnxO3 (x < 0.1) have been carried out. With increasing x the magnetic susceptibility behaviour changes from Pauli paramagnetic to Curie-Weiss type. The temperature coefficient of resistance (TCR) changes sign around x = 0.03 but the system seems to be metallic in terms of showing a finite extrapolated conductivity at 0 K even when x = 0.10. The x = 0.10 system shows indications of spin-glass like behaviour.
Resumo:
The present work gives a comprehensive numerical study of the evolution and decay of cylindrical and spherical nonlinear acoustic waves generated by a sinusoidal source. Using pseudospectral and predictor–corrector implicit finite difference methods, we first reproduced the known analytic results of the plane harmonic problem to a high degree of accuracy. The non-planar harmonic problems, for which the amplitude decay is faster than that for the planar case, are then treated. The results are correlated with the known asymptotic results of Scott (1981) and Enflo (1985). The constant in the old-age formula for the cylindrical canonical problem is found to be 1.85 which is rather close to 2, ‘estimated’ analytically by Enflo. The old-age solutions exhibiting strict symmetry about the maximum are recovered; these provide an excellent analytic check on the numerical solutions. The evolution of the waves for different source geometries is depicted graphically.
Resumo:
When there is a variation in the quality of males in a population, multiple mating can lead to an increase in the genetic fitness of a female by reducing the variance of the progeny number. The extent of selective advantage obtainable by this process is investigated for a population subdivided into structured demes. It is seen that for a wide range of model parameters (deme size, distribution of male quality, local resource level), multiple mating leads to a considerable increase in the fitness. Frequency-dependent selection or a stable coexistence between polyandry and monandry can also result when the possible costs involved in multiple mating are taken into account.
Resumo:
Strain rate sensitivity measurements are used to identify twinning and changes in deformation mechanisms in a Mg AZ31 alloy over a wide range of temperatures and grain sizes. At low temperatures, there is significant twinning at low strains with strain-rate insensitivity; at large strains, strain rate sensitivity is noted, corresponding to deformation by multiple slip. At high temperatures, there is very little twinning and this leads to a significant strain rate sensitivity from the early stages of deformation. (C) 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Thixocasting requires manufacturing of billets with non-dendritic microstructure. Aluminum alloy A356 billets were produced by rheocasting in a mould placed inside a linear electromagnetic stirrer. Subsequent heat treatment was used to produce a transition from rosette to globular microstructure. The current and the duration of stirring were explored as control parameters. Simultaneous induction heating of the billet during stirring was quantified using experimentally determined thermal profiles. The effect of processing parameters on the dendrite fragmentation was discussed. Corresponding computational modeling of the process was performed using phase-field modeling of alloy solidification in order to gain insight into the process of morphological changes of a solid during this process. A non-isothermal alloy solidification model was used for simulations. The morphological evolution under such imposed thermal cycles was simulated and compared with experimentally determined one. Suitable scaling using the thermosolutal diffusion distances was used to overcome computational difficulties in quantitative comparison at system scale. The results were interpreted in the light of existing theories of microstructure refinement and globularisation.
Resumo:
This paper proposes a differential evolution based method of improving the performance of conventional guidance laws at high heading errors, without resorting to techniques from optimal control theory, which are complicated and suffer from several limitations. The basic guidance law is augmented with a term that is a polynomial function of the heading error. The values of the coefficients of the polynomial are found by applying the differential evolution algorithm. The results are compared with the basic guidance law, and the all-aspect proportional navigation laws in the literature. A scheme for online implementation of the proposed law for application in practice is also given. (c) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Gels of various composition containing SiO2, Al2O3, and P2O5 have been investigated by employing high resolution magic-angle-spinning (MAS) 27Al, 29Si, and 31P NMR spectroscopy. Changes occurring in the NMR spectra as the gels are progressively heated have been examined to understand the nature of structural changes occurring during the crystallization of the gels. 27Al resonance is sensitive to changes in the coordination number even when the Al concentration is as low as 1 mol%. As the percentage of Al increases, the hydroxyl groups tend to be located on the Al sites while Si remains as SiO4/2 (Q4). Mullite is the major phase formed at higher temperature in the aluminosilicate gels. In the case of the silicophosphate gels, Si is present in the form of Q4 and Q3 species. There is a change in the coordination of Si from four to six as the gel is heated. The formation of six-coordinated Si is facilitated even at lower temperatures (~673 K) when the P2O5 content is high. The phosphorus atoms present as orthophosphoric acid units in the xerogels change over to metaphosphate-like units as the gel is heated to higher temperatures. In aluminosilicophosphates, Si is present as Q4 and Q3 species while P is present as metaphosphate units; Al in these gels seems to be inducted into the tetrahedral network positions.
Resumo:
We propose a physical mechanism to explain the origin of the intense burst of massive-star formation seen in colliding/merging, gas-rich, field spiral galaxies. We explicitly take account of the different parameters for the two main mass components, H-2 and H I, of the interstellar medium within a galaxy and follow their consequent different evolution during a collision between two galaxies. We also note that, in a typical spiral galaxy-like our galaxy, the Giant Molecular Clouds (GMCs) are in a near-virial equilibrium and form the current sites of massive-star formation, but have a low star formation rate. We show that this star formation rate is increased following a collision between galaxies. During a typical collision between two field spiral galaxies, the H I clouds from the two galaxies undergo collisions at a relative velocity of approximately 300 km s-1. However, the GMCs, with their smaller volume filling factor, do not collide. The collisions among the H I clouds from the two galaxies lead to the formation of a hot, ionized, high-pressure remnant gas. The over-pressure due to this hot gas causes a radiative shock compression of the outer layers of a preexisting GMC in the overlapping wedge region. This makes these layers gravitationally unstable, thus triggering a burst of massive-star formation in the initially barely stable GMCs.The resulting value of the typical IR luminosity from the young, massive stars from a pair of colliding galaxies is estimated to be approximately 2 x 10(11) L., in agreement with the observed values. In our model, the massive-star formation occurs in situ in the overlapping regions of a pair of colliding galaxies. We can thus explain the origin of enhanced star formation over an extended, central area approximately several kiloparsecs in size, as seen in typical colliding galaxies, and also the origin of starbursts in extranuclear regions of disk overlap as seen in Arp 299 (NGC 3690/IC 694) and in Arp 244 (NGC 4038/39). Whether the IR emission from the central region or that from the surrounding extranuclear galactic disk dominates depends on the geometry and the epoch of the collision and on the initial radial gas distribution in the two galaxies. In general, the central starburst would be stronger than that in the disks, due to the higher preexisting gas densities in the central region. The burst of star formation is expected to last over a galactic gas disk crossing time approximately 4 x 10(7) yr. We can also explain the simultaneous existence of nearly normal CO galaxy luminosities and shocked H-2 gas, as seen in colliding field galaxies.This is a minimal model, in that the only necessary condition for it to work is that there should be a sufficient overlap between the spatial gas distributions of the colliding galaxy pair.
Resumo:
The evolution of crystallographic texture in polycrystalline copper and nickel has been studied. The deformation texture evolution in these two materials over seven orders of magnitude of strain rate from 3 x 10(-4) to similar to 2.0 x 10(+3) s(-1) show little dependence on the stacking fault energy (SFE) and the amount of deformation. Higher strain rate deformation in nickel leads to weakerh < 101 > texture because of extensive microband formation and grain fragmentation. This behavior, in turn, causes less plastic spin and hence retards texture evolution. Copper maintains the stable end < 101 > component over large strain rates (from 3 x 10(-4) to 10(+2) s(-1)) because of its higher strain-hardening rate that resists formation of deformation heterogeneities. At higher strain rates of the order of 2 x 10(+3) s(-1), the adiabatic temperature rise assists in continuous dynamic recrystallization that leads to an increase in the volume fraction of the < 101 > component. Thus, strain-hardening behavior plays a significant role in the texture evolution of face-centered cubic materials. In addition, factors governing the onset of restoration mechanisms like purity and melting point govern texture evolution at high strain rates. SFE may play a secondary role by governing the propensity of cross slip that in turn helps in the activation of restoration processes.