152 resultados para SILICA GEL
Resumo:
Pb0.76Ca0.24TiO3 (PCT24) nanoparticles were synthesized by modified sal gel method and characterized by a number of experimental techniques such as X-ray diffraction, TGA-DTA, FTIR and transmission electron microscopy equipped with energy-dispersive X-ray spectroscopy (EDX). X-ray diffraction (XRD) and selected-area electron diffraction (SAED) investigations demonstrated that the postannealed (650 degrees C for 1 h) PCT24 nanoparticles have tetragonal perovskite crystal structure. TEM have been employed to characterize the morphology, structure and composition of the as prepared nanoparticles. Dielectric results indicates the evidence for relaxor type behavior while observed leaky ferroelectric loops may be because of the defects such as grain boundaries and the pores in the sample as the sample was not heated at higher temperature, to retain the nanosize dimension of the particles.
Resumo:
Thermal conductivities of glasses at low temperatures show strikingly similar behavior irrespective of their chemical composition. While for T<1 K the thermal conductivity can be understood in the phenomenological tunneling model; the ‘‘universal plateau’’ in the temperature interval 15>T>2 K is totally unexplained. While Rayleigh scattering of phonons by structural disorder should be the natural cause for limiting the mean free path of phonons in this temperature range, it has been concluded before that in glasses a strong enough source of such scattering does not exist. In this study we show by a proper structural analysis in at least one material (namely, silica) that a strong enough source of Rayleigh scattering of phonons in glasses does exist so that the ‘‘universal plateau’’ can be explained without invoking any new mechanism. This may be for the first time that the low-temperature property of a structural glass has been correlated to its structure.
Resumo:
Zinc oxide (ZnO) thin films have been deposited on glass substrates via sol-gel technique using zinc acetate dihydrate as precursor by spin coating of the sol at 2000 rpm. Effects of annealing temperature on optical, structural and photo luminescence properties of the deposited ZnO films have been investigated. The phase transition from amorphous to polycrystalline hexagonal wurtzite structure was observed at an annealing temperature of 400 degrees C. An average transmittance of 87% in the visible region has been obtained at room temperature. The optical transmittance has slightly increased with increase of annealing temperature. The band gap energy was estimated by Tauc's method and found to be 3.22 eV at room temperature. The optical band gap energy has decreased with increasing annealing temperature. The photoluminescence (PL) intensity increased with annealing temperature up to 200 degrees C and decreased at 300 degrees C. (c) 2010 Elsevier B.V. All rights reserved.
Resumo:
Description of gel-to-crystallite conversion process is made towards the synthesis of nanocrystalline titanates and aluminates. Thermodynamic and kinetic factors governing the conversion of a gel to meta-stable and stable nanocrystalline products(s) are discussed. Correlations between these factors and the preparative conditions employed for the syntheses of titanates and aluminates are arrived at.
Resumo:
Nanocrystalline Fe53Co47 alloy was synthesized by a single-step transmetallation chemical method at room temperature. The Fe53Co47 alloy nanoparticles of 77 and 47 wt% were dispersed in silica matrix by the sol-gel process using tetraethyl orthosilcate. Structural studies reveal that the as-prepared alloy powders are in bcc phase and silica is in an amorphous state. The phase-transition temperature and Mossbauer spectra analysis of the Fe-Co alloy establishes the homogeneous alloy formation. A saturation magnetization of 218 emu/g was obtained for pure FeCo alloy at room temperature. Scanning electron microscopic analysis demonstrates the hollow-sphere morphology for FeCo alloy particles. Magnetic nanocomposite consisting of 47 wt% FeCo-silica shows enhanced thermal stability over the native FeCo alloy. Electrical and dielectric properties of 47 wt% FeCo-silica nanocomposites were investigated as a function of frequency and temperature. It was found that the dielectric constants and dielectric loss were stable throughout the measured temperature (310-373 K). Our results indicate that FeCo-silica nanocomposite is a promising candidate for high-frequency applications. (C) 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Resumo:
Sol-Gel method was employed to synthesize pure and wide ranged La-modified CaCu3Ti4O12 ceramics using mixed acetate-nitrate-alcoxide individual metal-ion precursors. SEM pictures revealed that grain size monotonously decreases with the extent of La incorporation. All the prepared ceramics manifested dielectric constant in the range similar to 10(3)-10(4). Dielectric loss was found to decrease with La incorporation and got optimized for 20% La3+ while retaining its high dielectric constant which may be industrially important. Room temperature Impedance spectroscopy suggested that decrease in grain resistance is responsible for reduction in dielectric loss according to Internal Barrier Layer Capacitor (IBLC) model.
Resumo:
Chemically pure and stoichiometric lanthanide chromites, LnCrO3, where Ln = La, Pr, Nd, Sm, Gd, Dy, Ho, Yb, Lu and YCrO3 have been prepared by the calcination of the corresponding lanthanide bis(citrato)chromium {Ln[Cr(C6H5O7)2·nH2O} complexes at relatively low temperatures. Formation of the chromites was confirmed by powder X-ray diffraction, infrared and electronic spectra. The citrate gel process is found to be highly economical, time-saving and appropriate for the large-scale production of these ceramic materials at low temperatures compared with other non-conventional methods.
Resumo:
Phase-pure, crystalline lanthanide chromates LnCrO4 (V), where Ln = La, Pr, Nd, Sm, Gd, Dy, Ho, Yb, Lu and Y, have been prepared by the controlled combustion of the corresponding lanthanide biscitrato chromium (III) complexes at comparatively low temperatures. Formation of chromates (V) was confirmed by X-ray diffraction, infrared and electronic spectroscopy. Phase purity of the materials has also been confirmed by X-ray photoelectron spectroscopy.
Resumo:
Multilayer lithium tantalate thin films were deposited on Pt-Si Si(111)/SiO2/TiO2/Pt(111)]substrates by sol-gel process. The films were annealed at different annealing temperatures (300, 450 and 650 degrees C) for 15 min. The films are polycrystalline at 650 degrees C and at other annealing conditions below 650 degrees C the films are in amorphous state. The films were characterized using X-ray diffraction, atomic force microscopy (AFM) and Raman spectroscopy. The AFM of images show the formation of nanograins of uniform size (50 nm) at 650 degrees C. These polycrystalline films exhibit spontaneous polarization of 1.5 mu C/cm(2) at an application of 100 kV/cm. The dielectric constant of multilayer film is very small (6.4 at 10 kHz) as compared to that of single crystal. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
We demonstrate that the structural and optical properties of a sol-gel deposited zinc oxide thin film can be tuned by varying the composition of the sol, consisting of ethylene glycol and glycerol. A systematic study of the effect of the composition of sol on the mean grain size, thickness, and defect density of the zinc oxide film is presented. About 20% glycerol content in the sol is observed to improve the quality of the film, as evaluated by X-ray diffraction and photoluminescence studies. Thus, optimizing the composition of the sol for about 60 nm thick ZnO film using 20% glycerol resulted in the zinc oxide film that is about 80% transparent in visible spectrum, exhibiting electrical resistivity of about 18 Omega cm and field-effect mobility of 0.78 cm(2)/(V s). (C) 2010 The Electrochemical Society. DOI: 10.1149/1.3515894] All rights reserved.
Resumo:
Amorphous SiO2 thin films were prepared on glass and silicon substrates by cost effective sol-gel method. Tetra ethyl ortho silicate (TEOS) was used as the precursor material, ethanol as solvent and concentrated HCl as a catalyst. The films were characterized at different annealing temperatures. The optical transmittance was slightly increased with increase of annealing temperature. The refractive index was found to be 1.484 at 550 nm. The formation of SiO2 film was analyzed from FT-IR spectra. The MOS capacitors were designed using silicon (1 0 0) substrates. The current-voltage (I-V), capacitance-voltage (C-V) and dissipation-voltage (D-V) measurements were taken for all the annealed films deposited on Si (1 0 0). The variation of current density, resistivity and dielectric constant of SiO2 films with different annealing temperatures was investigated and discussed for its usage in applications like MOS capacitor. The results revealed the decrease of dielectric constant and increase of resistivity of SiO2 films with increasing annealing temperature. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
A cross-linked polymer-gel soft matter electrolyte with superior electrochemical, thermal and mechanical properties obtained from free radical polymerization of vinyl monomers in a semi-solid organic nonionic plastic crystalline electrolyte for application in rechargeable lithium-ion batteries is discussed here.
Resumo:
Sparingly soluble neodymium copper oxalate (NCO) single crystals were grown by gel method, by the diffusion of a mixture of neodymium nitrate and cupric nitrate into the set gel containing oxalic acid. Tabular crystal, revealing well-defined dissolution figures has been recorded. X-ray diffraction studies of the powdered sample reveal that NCO is crystalline. Infrared absorption spectrum confirmed the formation of oxalato complex with water of crystallization, while energy dispersive X-ray analysis established the presence of neodymium dominant over copper in the sample. X-ray photoelectron spectroscopic studies established the presence of Nd and Cu in oxide states besides (C2O4)(2-) oxalate group. The intensities of Nd (3d(5/2)) and Cu (2p(3/2)) peaks measured in terms of maximum photoelectron count rates also revealed the presence of Nd in predominance. The inductively coupled plasma analysis supports the EDAX and XPS data by the estimation of neodymium percentage by weight to that of copper present in the NCO sample. On the basis of these findings, an empirical structure for NCO has been proposed. The implications are discussed.
Resumo:
Coarse (BOn/2)-O-n+/xH(2)O (10