358 resultados para SEMICONDUCTOR MATERIALS
Resumo:
This paper presents finite element analysis of laminated anisotropic beams of bimodulus materials. The finite element has 16 d.o.f. and uses the displacement field in terms of first order Hermite interpolation polynomials. As the neutral axis position may change from point to point along the length of the beam, an iterative procedure is employed to determine the location of zero strain points along the length. Using this element some problems of laminated beams of bimodulus materials are solved for concentrated loads/moments perpendicular and parallel to the layering planes as well as combined loads.
Resumo:
Abstract is not available.
Resumo:
Negative differential resistance (NDR) has been observed for the first time above room temperature in gallium nitride nanocrystals synthesized by a simple chemical route. Current-voltage characteristics have been used to investigate this effect through a metal-semiconductor-metal (M-S-M) configuration on SiO2. The NDR effect is reversible and reproducible through many cycles. The threshold voltage is similar to 7 V above room temperature.
Resumo:
Microwave modulation has been achieved by using thin-film amorphous-semiconductor switches made of ternary chalcogenides. X-band microwaves were modulated by a threshold switch at frequencies varying from 100 Hz to 1 MHz, with modulation efficiencies comparable to siliconp¿i¿n diodes. The insertion loss was 0.5 to 0.6 dB and the isolation was 18 dB at 100 mA operating current. Possible applications this method are discussed.
Resumo:
Hybrid semiconductor-metal nanoparticles monolayer of Cadmium Sclenide and gold nanoparticles has been prepared, using Langmuir – Blodgett technique. The near field photoluminescence spectra from such monolayer films, shows red shift similar to 75 meV with respect to CdSe QDs monolayer film and splitting similar to 57 meV. The composite spectra are much broader similar to 330 meV compared to the corresponding emission spectra of CdSe monolayer similar to 165 meV. The possible explanation for the observed features are provided in terms of exciton - Plasmon interaction.
Resumo:
Measurement of the chemical shifts ΔE of the K-absorption edge in both crystalline and amorphous states of several solids shows that ΔE is generally smaller in the amorphous state. More covalent solids appear to be associated with small values of ΔE.
Resumo:
We propose a simplified technique for dual wavelength operation of an extended cavity semiconductor laser, and its characterization using electromagnetically induced transparency (EIT). In this laser cavity scheme light beam is made converging before it incidences on the cavity grating. The converging angle of the beam creates two longitudinal oscillating modes of resonating cavity. Frequency separation between the longitudinal modes are measured with the help of beat frequency generation in a photodiode and creating pair of EIT spectra in Rb vapor. The pair of EIT dips that are generated due to dual wavelength of this laser (that is used as control laser) can be used to estimate frequency difference between the generated wavelengths. Width of EIT spectra can be used to estimate line width of individual wavelength components.
Resumo:
Two new donor-acceptor type liquid crystalline semiconductors based on benzothiazole have been synthesized. Their structural, photophysical and electronic properties were investigated using X-ray diffraction, atomic force microscopy, cyclic voltammetry, UV-Vis, photoluminescence, and Raman spectroscopy. The liquid crystalline behaviour of the molecules was thoroughly examined by differential scanning calorimetry (DSC) and optical polarizing microscope. The DSC and thermogravimetric analysis (TGA) show that these materials posses excellent thermal stability and have decomposition temperatures in excess of 300 degrees C. Beyond 160 degrees C both molecules show a smectic A liquid crystalline phase that exists till about 240 degrees C. Field-effect transistors were fabricated by vacuum evaporating the semiconductor layer using standard bottom gate/top contact geometry. The devices exhibit p-channel behaviour with hole mobilities of 10(-2) cm(2)/Vs. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
In1-xMnxSb films have been grown with different Mn doping concentrations (x = 0.0085, 0.018, 0.029 and 0.04) beyond the equilibrium 14 solubility limit by liquid phase epitaxy. We have studied temperature dependent resistivity, the Hall effect, magnetoresistance and magnetization for all compositions. Saturation in magnetization observed even at room temperature suggests the existence of ferromagnetic clusters in the film which has been verified by scanning electron microscopy studies. The anomalous Hall coefficient is found to be negative. Remnant field present on the surface of the clusters seems to affect the anomalous Hall effect at very low fields (below 350 Gauss). In the zero field resistivity, a variable-range hopping conduction mechanism dominates below 3.5 K for all samples above which activated behavior is predominant. The temperature dependence of the magnetization measurement shows a magnetic ordering below 10 K which is consistent with electrical measurements. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Designing an ultrahigh density linear superlattice array consisting of periodic blocks of different semiconductors in the strong confinement regime via a direct synthetic route remains an unachieved challenge in nanotechnology. We report a general synthesis route for the formulation of a large-area ultrahigh density superlattice array that involves adjoining multiple units of ZnS rods by prolate US particles at the tips. A single one-dimensional wire is 300-500 nm long and consists of periodic quantum wells with a barrier width of 5 nm provided by ZnS and a well width of 1-2 nm provided by CdS, defining a superlattice structure. The synthesis route allows for tailoring of ultranarrow laserlike emissions (fwhm approximate to 125 meV) originating from strong interwell energy dispersion along with control of the width, pitch, and registry of the superlattice assembly. Such an exceptional high-density superlattice array could form the basis of ultrahigh density memories in addition to offering opportunities for technological advancement in conventional heterojunction-based device applications.
Resumo:
The constitutive model for a magnetostrictive material and its effect on the structural response is presented in this article. The example of magnetostrictive material considered is the TERFENOL-D. As like the piezoelectric material, this material has two constitutive laws, one of which is the sensing law and the other is the actuation law, both of which are highly coupled and non-linear. For the purpose of analysis, the constitutive laws can be characterized as coupled or uncoupled and linear or non linear. Coupled model is studied without assuming any explicit direct relationship with magnetic field. In the linear coupled model, which is assumed to preserve the magnetic flux line continuity, the elastic modulus, the permeability and magneto-elastic constant are assumed as constant. In the nonlinear-coupled model, the nonlinearity is decoupled and solved separately for the magnetic domain and the mechanical domain using two nonlinear curves, namely the stress vs. strain curve and the magnetic flux density vs. magnetic field curve. This is performed by two different methods. In the first, the magnetic flux density is computed iteratively, while in the second, the artificial neural network is used, where in the trained network will give the necessary strain and magnetic flux density for a given magnetic field and stress level. The effect of nonlinearity is demonstrated on a simple magnetostrictive rod.
Resumo:
We have studied magneto-transport and optical properties of Ga1-xMnxSb crystals (x = 0.01, 0.02, 0.03 and 0.04) grown by horizontal Bridgman method. Negative magnetoresistance and anomalous Hall effect have been observed below 10K. Temperature dependence of magnetization measurement shows a magnetic ordering below 10K which could arise from Ga1-xMnxSb alloy formation. Also, saturation in magnetization observed even at room temperature suggests the existence of ferromagnetic MnSb clusters. Reduction in band gap is observed with increasing Mn concentration in the crystals. Temperature dependence of band gap follows Bose-Einstein's model.
Influence of quantum confinement on the photoemission from superlattices of optoelectronic materials
Resumo:
We study the photoemission from quantum wire and quantum dot superlattices with graded interfaces of optoelectronic materials on the basis of newly formulated electron dispersion relations in the presence of external photo-excitation. Besides, the influence of a magnetic field on the photoemission from the aforementioned superlattices together with quantum well superlattices in the presence of a quantizing magnetic field has also been studied in this context. It has been observed taking into account HgTe/Hg1-xCdxTe and InxGa1-xAs/InP that the photoemission from these nanostructures increases with increasing photon energy in quantized steps and exhibits oscillatory dependences with the increase in carrier concentration. Besides, the photoemission decreases with increasing light intensity and wavelength, together with the fact that said emission decreases with increasing thickness exhibiting oscillatory spikes. The strong dependences of the photoemission on the light intensity reflects the direct signature of light waves on the carrier energy spectra. The content of this paper finds six applications in the fields of low dimensional systems in general. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Semiconductor Bloch equations, which microscopically describe the dynamics of a Coulomb interacting, spin-unpolarized electron-hole plasma, can be solved in two limits: the coherent and the quasiequilibrium regimes. These equations have been recently extended to include the spin degree of freedom and used to explain spin dynamics in the coherent regime. In the quasiequilibrium limit, one solves the Bethe-Salpeter equation in a two-band model to describe how optical absorption is affected by Coulomb interactions within a spin unpolarized plasma of arbitrary density. In this work, we modified the solution of the Bethe-Salpeter equation to include spin polarization and light holes in a three-band model, which allowed us to account for spin-polarized versions of many-body effects in absorption. The calculated absorption reproduced the spin-dependent, density-dependent, and spectral trends observed in bulk GaAs at room temperature, in a recent pump-probe experiment with circularly polarized light. Hence, our results may be useful in the microscopic modeling of density-dependent optical nonlinearities due to spin-polarized carriers in semiconductors.