111 resultados para Refractive index


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The stimulated emission cross section σp for the 1060 nm transition of Nd3+ in lead borate and bismuth borate glasses has been determined from fluorescence measurements. The compositional dependence of σp, which has been evaluated using radiative transition probability, refractive index of the host glass, effective fluorescence linewidth, and position of the band, with PbO/Bi2O3 content is investigated. The σp values of the 1060 nm band of Nd3+ for lead borate and bismuth borate glasses are found to be in the range 2.6–5.7×10−20 cm2 at 298 K and 3.0–6.3×10−20 cm2 at 4.2 K. The σp values are comparatively large suggesting the possible utilization of these materials in laser applications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sensitivity analysis is an important aspect to be looked into while designing lab-on-a-chip systems. In this paper we will be showing with appropriate design that the best sensitivity of the fluorescence biosensor is achieved for an optimal width of fluidic gap, corresponding to a particular mode spot size. We will be also showing that the sensitivity of the biosensor is affected by efficiency of light coupling, which is influenced by changes in the width of fluidic gap, refractive index of the fluid and higher order modes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The technological world has attained a new dimension with the advent of miniaturization and a major breakthrough has evolved in the form of moems, technically more advanced than mems. This breakthrough has paved way for the scientists to research and conceive their innovation. This paper presents a mathematical analysis of the wave propagation along the non-uniform waveguide with refractive index varying along the z axis implemented on the cantilever beam of MZI based moem accelerometer. Secondly the studies on the wave bends with minimum power loss focusing on two main aspects of bend angle and curvature angle is also presented.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nonlinear absorption and refraction characteristics of cesium lithium borate (CsLiB6O10) crystal have been studied using Z-scan technique. Ti:sapphire laser with 110 fs pulse width operating at 800 nm wavelength and pulse repetition rate of 1 kHz is used as the source of photons. Intensity of the laser pulse is varied from 0.541 to 1.283 T W/cm2 to estimate the intensity dependence of multiphoton absorption coefficients. Using the theory of multiphoton absorption proposed by Sutherland [ Handbook of Nonlinear Optics, in 2nd ed., edited by D. G. McLean and S. Kirkpatrick, Dekker, New York (2003) ], found that open aperture Z-scan data fit well for the five-photon absorption (5PA) process. 5PA coefficients are obtained by fitting the expressions into the open aperture experimental data for various peak intensities (I00). The nonlinear refractive index n2 estimated from closed aperture Z-scan experiment is 1.075×10−4 cm2/T W at an input peak intensity of 0.723 T W/cm2. The above experiment when repeated with a 532 nm, 6 ns pulsed laser led to an irreversible damage of the sample resulting in an asymmetric open aperture Z-scan profile. This indicates that it is not possible to observe multiphoton absorption in this regime of pulse width using 532 nm laser.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Substrate temperature and ion bombardment during deposition have been observed to modify significantly the optical and structural properties of dielectric thin films. Single‐layer films of CeO2 have been deposited by electron beam evaporation with simultaneous oxygen‐ion bombardment using a Kaufman broad beam ion source and maintaining the substrates at elevated temperature. A systematic study has been made on the influence of (a) substrate temperature in the range ambient to 300 °C, (b) ion energy in the range 300–700 eV, and (c) ion current density 100–220 μA/cm2 on optical properties such as refractive index, extinction coefficient, inhomogeneity, packing density, and structural properties. The refractive index increased with in increase in substrate temperature: ion energy up to 600 eV and ion current density. Homogeneous, absorption free and high index (2.48) films have been obtained at 600 eV, 220 μA/cm2 and at substrate temperature of 300 °C. The packing density of the films was observed to be unity for the same deposition conditions. Substrate temperature with simultaneous ion bombardment modified the structure of the films from highly ordered to fine grain structure.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

It is pointed out that the change in refractive index with temperature of a crystal is different from what is calculated from the accompanying change in volume and the piezo-optic coefficients. The difference, which is a pure temperature effect, is explained as being due to the change in polarizability of the atoms produced by a change in the amplitude of vibration. The polarizability (α) can be expanded as a Taylor series in the changes of the distance (r) between the atoms and it is found that while the piezo-optic coefficient depends only on ∂α/∂r, the pure temperature effect is a function of ∂ 2 a/∂r 2. Making use of the experimental data, the values of a and its first two derivatives can be determined. These values are foundto be of the same order as those deduced from the intensities of Rayleigh and Raman scattering of light. The theory predicts that dn/dT should vary as the coefficient of cubical expansion at different temperatures and this is verified to be true. Finally, calculations are made of the thermo- and piezo-optic coefficients, considering the electrostatic interaction between the atoms. These do not adequately explain the observed facts, since no provision is made for the distortion of electron atmospheres around the atoms and the consequent changes in polarizability.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Amorphous silicon carbide (a-Si(1-x)C(x)) films were deposited on silicon (100) and quartz substrates by pulsed DC reactive magnetron sputtering of silicon in methane (CH(4))-Argon (Ar) atmosphere. The influence of substrate temperature and target power on the composition, carbon bonding configuration, band gap, refractive index and hardness of a-SiC films has been investigated. Increase in substrate temperature results in slightly decreasing the carbon concentration in the films but favors silicon-carbon (Si-C) bonding. Also lower target powers were favorable towards Si-C bonding. X-ray photoelectron spectroscopy (XPS) results agree with the Fourier Transform Infrared (FTIR), UV-vis spectroscopy results. Increase in substrate temperature resulted in increased hardness of the thin films from 13 to 17 GPa and the corresponding bandgap varied from 2.1 to 1.8 eV. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The variation in temperature and concentration plays a crucial role in predicting the final microstructure during solidification of a binary alloy. Most of the experimental techniques used to measure concentration and temperature are intrusive in nature and affect the flow field. In this paper, the main focus is laid on in-situ, non-intrusive, transient measurement of concentration and temperature during the solidification of a binary mixture of aqueous ammonium chloride solution (a metal-analog system) in a top cooled cavity using laser based Mach-Zehnder Interferometric technique. It was found from the interferogram, that the angular deviation of fringe pattern and the total number of fringes exhibit significant sensitivity to refractive index and hence are functions of the local temperature and concentration of the NH4Cl solution inside the cavity. Using the fringe characteristics, calibration curves were established for the range of temperature and concentration levels expected during the solidification process. In the actual solidification experiment, two hypoeutectic solutions (5% and 15% NH4Cl) were chosen. The calibration curves were used to determine the temperature and concentration of the solution inside the cavity during solidification of 5% and 15% NH4Cl solution at different instants of time. The measurement was carried out at a fixed point in the cavity, and the concentration variation with time was recorded as the solid-liquid interface approached the measurement point. The measurement exhibited distinct zones of concentration distribution caused by solute rejection and Rayleigh Benard convection. Further studies involving flow visualization with laser scattering confirmed the Rayleigh Benard convection. Computational modeling was also performed, which corroborated the experimental findings. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The absorption and emission spectra of two coumarins namely 7, 8 benzo-4-azidomethyl coumarin (C-1) and 6-methoxy-4-azidomethyl coumarin (C-2) have been recorded at room temperature in solvents of different polarities. The ground state dipole moments (mu(g)) of two coumarins were determined experimentally by Guggenheim method. The exited state (mu(e)) dipole moments were estimated from Lippert's, Bakhshievs and Chamma-Viallet's equations by using the variation of Stoke's shift with the solvent dielectric constant and refractive index. The ground and excited state dipole moments were calculated by means of solvatochromic shift method and also the excited state dipole moments are determined in combination with ground state dipole moments. It was observed that dipole moments of excited state were higher than those of the ground state, indicating a substantial redistribution of the pi-electron densities in a more polar excited state for two coumarins.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

DC reactive magnetron sputtering technique was employed for deposition of titanium dioxide (TiO2) films. The films were formed on Corning glass and p-Si (100) substrates by sputtering of titanium target in an oxygen partial pressure of 6x10-2 Pa and at different substrate temperatures in the range 303 673 K. The films formed at 303 K were X-ray amorphous whereas those deposited at substrate temperatures?=?473 K were transformed into polycrystalline nature with anatase phase of TiO2. Fourier transform infrared spectroscopic studies confirmed the presence of characteristic bonding configuration of TiO2. The surface morphology of the films was significantly influenced by the substrate temperature. MOS capacitor with Al/TiO2/p-Si sandwich structure was fabricated and performed currentvoltage and capacitancevoltage characteristics. At an applied gate voltage of 1.5 V, the leakage current density of the device decreased from 1.8?x?10-6 to 5.4?x?10-8 A/cm2 with the increase of substrate temperature from 303 to 673 K. The electrical conduction in the MOS structure was more predominant with Schottky emission and Fowler-Nordheim conduction. The dielectric constant (at 1 MHz) of the films increased from 6 to 20 with increase of substrate temperature. The optical band gap of the films increased from 3.50 to 3.56 eV and refractive index from 2.20 to 2.37 with the increase of substrate temperature from 303 to 673 K. Copyright (c) 2012 John Wiley & Sons, Ltd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

High density transparent glasses (7.86 g/cc) were fabricated in the 2Bi(2)O(3)-B2O3 (BBO) system. Optical band gap of the obtained glasses was found to be 2.6eV. The refractive index measured for these glasses was 2.25 +/- 0.05 at lambda=543 nm. Nonlinear refraction and absorption studies were carried out on the BBO glasses using z-scan technique a lambda=532 nm of 10 ns pulse width. The nonlinear refractive index obtained was n(2)=12.1x10(-14) cm(2)/W and nonlinear absorption coefficient was beta=15.2 cm/GW. The n(2) and beta values of the BBO glasses were large compared to the other reported high index bismuth based oxide glass systems in the literature. These were attributed to the high density, high linear refractive index, low band gap and two photon absorption associated with these glasses. The electronic origin of large nonlinearities was discussed based on bond-orbital theory.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We demonstrate the phase fluctuation introduced by oscillation of scattering centers in the focal volume of an ultrasound transducer in an optical tomography experiment has a nonzero mean. The conditions to be met for the above are: (i) the frequency of the ultrasound should be in the vicinity of the most dominant natural frequency of vibration of the ultrasound focal volume, (ii) the corresponding acoustic wavelength should be much larger than l(n)*, a modified transport mean-free-path applicable for phase decorrelation and (iii) the focal volume of the ultrasound transducer should not be larger than 4 - 5 times (l(n)*)(3). We demonstrate through simulations that as the ratio of the ultrasound focal volume to (l(n)*)(3) increases, the average of the phase fluctuation decreases and becomes zero when the focal volume becomes greater than around 4(l(n)*)(3); and through simulations and experiments that as the acoustic frequency increases from 100 Hz to 1 MHz, the average phase decreases to zero. Through experiments done in chicken breast we show that the average phase increases from around 110 degrees to 130 degrees when the background medium is changed from water to glycerol, indicating that the average of the phase fluctuation can be used to sense changes in refractive index deep within tissue.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Transparent colorless glasses in the ternary BaOTiO2B2O3 system were fabricated via conventional melt-quenching technique. The glasses with certain molar concentrations of BaO and TiO2 on heat treatment at appropriate temperatures yielded nanocrystalline phase of TiO2 associated with the crystallite size in the 515 nm range. Nanocrystallized glasses exhibited high refractive index (n = 2.15) measured at lambda = 543 nm. These glasses were found to be hydrophobic in nature associated with the contact angle of 90 degrees. These high-index glass nanocrystal composites would be of potential interest for optical device applications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ferroelectric c-oriented Bi2VO5.5 (BVO) thin films (thickness approximate to 300 nm) were fabricated by pulsed laser deposition on corning glass substrates. Nonlinear refractive index (n(2)) and two photon absorption coefficient (beta) were measured by Z-scan technique at 532 nm wavelength delivering pulses with 10 ns duration. Relatively large values of n(2) = 2.05 +/- 0.2 x 10(-10) cm(2)/W and beta = 9.36 +/- 0.3 cm/MW were obtained for BVO thin films. Origin of the large optical nonlinearities in BVO thin films was discussed based on bond-orbital theory of transition metal oxides. (c) 2012 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Titanium dioxide (TiO2) thin films were deposited on fused quartz substrates by electron beam evaporation method at room temperature. The films were annealed at different temperatures in ambient air. The surface morphology/roughness at different annealing temperatures were analyzed by atomic force microscopy (AFM). The crystallinity of the film has improved with the increase of annealing temperature. The effect of annealing temperature on optical, photoluminescence and Raman spectra of TiO2 films were investigated. The refractive index of TiO2 films were studied by envelope method and reflectance spectra and it is observed that the refractive index of the films was high. The photoluminescence intensity corresponding to green emission was enhanced with increase of annealing temperature. The peaks in Raman spectra depicts that the TiO2 film is of anatase phase after annealing at 300 degrees C and higher. The films show high refractive index, good optical quality and photoluminescence characteristics suggest that possible usage in opto-electronic and optical coating applications. (C) 2012 Elsevier B.V. All rights reserved.