165 resultados para Receptores purinérgicos P2
Resumo:
Reactions of cis-[(C6H5N)PC1]z(1 ) with the difunctional reagents HO(CH2)20H,H (CH3)N(CHz)zN(CH3)HH, (CH3)N(CH& OH, and HO(CHz)30Hi n the presence of triethylamine yield the new bicyclic 1,3,2X3,4h3-diazadiphosphetidines[( C6H5- N)PIZ[-O(CHZ)Zo-l (2), [(C6H5N)PlZ[-(CH3)N(CHZ)ZN(CH3)-l (319 [(C6H~N)PlZ~-(CH3)N(cHZ)20 (4), and [(C6H5 N)P],[-Q(CH2),0-] (5), respectively. The products have been characterized by elemental analyses and IR and NMR spectroscopic data. The structures of 4 and 5 have been determined by single-crystal X-ray analysis. Crystal data for 4: monoclinic, P2,/c, a = 9.823 (2) A, b = 8.608 (1) A, c = 18.423 (3) A, i3 = 90.55 (1)O, Z = 4. Crystal data for 5 monoclinic, P2,/c, a = 9.727 (2) A, b = 8.064 (2) A, c = 19.702 (4) A, @ =I 91.31 (l)', 2 = 4. The structures have been solved by direct methods and refined to R = 0.028 for 4 and R = 0.050 for 5. Compound 4 is the first example of an aminoalkoxy-l,3,2X3,4X3-diazadiphosphetidine. The PzNz ring is slightly puckered in both 4 and 5 and the puckering occurs in a manner opposite to that observed for cis-[(RN)PX],structures.
Resumo:
A comprehensive analysis of thermal and photochemical reactions of thiocarbonyls has been undertaken within the PMO framework employing MINDO/3 orbital energies and wavefunctions. The model is generally successful in rationalizing the observed regiochemistry of such reactions. In particular, the indicated regiochemistry for [4 + 2] thermal cycloadditions of saturated thiones to 2-substituted dienes, for the dimerization of α,β-unsaturated thiones, and for the photochemical cycloadditions of thioketones and thioenones are all in agreement with experimental observations. Interesting predictions are also made concerning cycloadditions of saturated, conjugated, and arylalkyl thiones which have not yet been studied experimentally. The analysis reveals the decisive role played by secondary orbital interactions in determining the observed product selectivity in the photochemical reactions between thioenone and olefins.
Resumo:
C22H31NO2.H2 O, M r = 359" 5, orthorhombic,P2~212 ~, a= 10.032 (1), b= 11.186 (1), C = 17.980 (1)/~,, U= 2017.48/~3, Z = 4, D x = 1.276 Mg m -a, 2(Cu Kct) = 1.5418/~, # = 0.69 mm -~,F(000) = 784, T = 293 K. Final R = 0.05 for 1972 unique reflections with I > 3o(/). Ring A is planar, and rings B and C adopt a chair conformation. Rings D and E are envelopes, with C(14) and C(20) displaced from their respective ring planes by 0-616 (2) and 0.648 (3)/~. The A/B ring junction is quasi-trans,whilst ring systems B/C and C/D are trans fused about the bonds C(8)-C(9) and C(13)-C(14) respectively.The D/E junction shows cis fusion.
Resumo:
L-Lysine D-glutamate crystallizes in the monoclinic space group P2(1) with a = 4.902, b = 30.719, c = 9.679 A, beta = 90 degrees and Z = 4. The crystals of L-lysine D-aspartate monohydrate belong to the orthorhombic space group P2(1)2(1)2(1) with a = 5.458, b = 7.152, c = 36.022 A and Z = 4. The structures were solved by the direct methods and refined to R values of 0.125 and 0.040 respectively for 1412 and 1503 observed reflections. The glutamate complex is highly pseudosymmetric. The lysine molecules in it assume a conformation with the side chain staggered between the alpha-amino and the alpha-carboxylate groups. The interactions of the side chain amino groups of lysine in the two complexes are such that they form infinite sequences containing alternating amino and carboxylate groups. The molecular aggregation in the glutamate complex is very similar to that observed in L-arginine D-aspartate and L-arginine D-glutamate trihydrate, with the formation of double layers consisting of both types of molecules. In contrast to the situation in the other three LD complexes, the unlike molecules in L-lysine D-aspartate monohydrate aggregate into alternating layers as in the case of most LL complexes. The arrangement of molecules in the lysine layer is nearly the same as in L-lysine L-aspartate, with head-to-tail sequences as the central feature. The arrangement of aspartate ions in the layers containing them is, however, somewhat unusual. Thus the comparison between the LL and the LD complexes analyzed so far indicates that the reversal of chirality of one of the components in a complex leads to profound changes in molecular aggregation, but these changes could be of more than one type.
Resumo:
A detailed study, involving the synthesis of a single-source precursor containing two metal ions sharing the same crystallographic site, has been undertaken to elucidate the use of such a single-source precursor in a CVD process for growing thin films of oxides comprising these two metals, ensuring a uniform composition and distribution of metal ions. The substituted complexes Cr1-xAlx(acac)(3), where acac = acetyl-acetonate, have been prepared by a co-synthesis method, and characterized using UV-Vis spectroscopy. TGA/DTA measurements, and single crystal X-ray diffraction at low temperature. All the studied compositions crystallize in the monoclinic space group P2(1)/c with Z = 4 in the unit cell. It was observed that the ratio (Al:Cr) of the site occupancy for the metal ions, obtained from single crystal refinement, is in agreement with the results obtained from complexometric titrations. All the solid state structures have the metal in an octahedral environment forming six-membered chelate rings. M-O acac bond lengths and disorder in the terminal carbon have been studied in detail for these substituted metal-organic complexes. One composition among these was chosen to evaluate their suitability as a single-source precursor in a LPMOCVD process (low-pressure metal-organic chemical vapour deposition) for the deposition of a substituted binary metal oxide thin film. The resulting thin films were characterized by X-ray diffraction, scanning electron microscopy, and infrared spectroscopy. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Research on structure and magnetic properties of polynuclear metal complexes to understand the structural and chemical factors governing the electronic exchange coupling mediated by multi-atom bridging ligands is of growing interest. Hydrothermal treatment of Ni(NO3)(2)center dot 6H(2)O with N-(4-carboxyphenyl)iminodiacetic acid N-4(H(3)CPIDA)] at 150 degrees C yielded a 3D coordination polymer of general formula Ni-3{N-4( CPIDA)}(2)(H2O)(3)]center dot 6H(2)O (1). An analogous network of general formula Co-3{N-3(CPIDA)}(2)(H2O)(3)]center dot 3H(2)O (2) was synthesized using N-(3-carboxyphenyl) iminodiacetic acid N-3(H(3)CPIDA)] in combination with Co(NO3)(2)center dot 6H(2)O under identical reaction condition. Both the complexes contain trinuclear secondary building unit, and crystallized in monoclinic system with space groups C2/c (1) and P2(1)/c (2), respectively. Variable temperature magnetic characterization of these complexes in the temperature range of 2-300 K indicated the presence of overall ferromagnetic and antiferromagnetic behavior for 1 and 2, respectively. Density functional theory calculations (B3LYP functional) were performed for further insight on the trinuclear units to provide a qualitative theoretical interpretation on the overall magnetic behavior of the complexes 1 and 2. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Although the peptide Boc-Aibl-Ala2-Leu3- Aib4-Alas Leu'-Aib7-Ala8-Leu9-Aib'0-OMe [with a t-butoxycarbonyl(Boc) blocking group at the amino terminus, a methyl ester (OMe) at the carboxyl terminus, and four a-aminoisobutyric (Aib) residues] has a 3-fold repeat of residues, the helix formed by the peptide backbone is irregular. The carboxyl-terminal half assumes an at-helical form with torsion angles ) and r of approximately -60° and -45°, respectively, whereas the amino-terminal half is distorted by an insertion of a water molecule between the amide nitrogen of Ala5 [N(5)] and the carbonyl oxygen of Ala2 [0(2)]. The water molecule W(1) acts as a bridge by forming hydrogen bonds N(5).W(1) (2.93 A) and W(1)---0(2) (2.86 A). The distortion of the helix exposes the carbonyl oxygens of Aib' and Aib4 to the outside environment, with the consequence that the helix assumes an amphiphilic character despite having all apolar residues. Neighboring helices in the crystal run in antiparallel directions. On one side of a helix there are only hydrophobic contacts with efficient interdigitation of leucine side chains with those from the neighboring helix. On the other side of the helix there are hydrogen bonds between protruding carbonyl oxygens and four water molecules that separate two neighboring helices. Along the helix axis the helices bind head-to-tail with a direct hydrogen bond N(2)-0(9) (3.00 A). Crystals grown from methanol/water solution are in space group P2, with a = 15.778 ± 0.004 A, b = 11.228 ± 0.002 A, c = 18.415 ± 0.003 A, = 102.10 ± 0.02ur and two formula units per cell for C49HON1003 2H2OCH3OH. The overall agreement factorR is 7.5% for 3394 reflections observed with intensities >3a(F), and the resolution is 0.90 A.
Resumo:
The crystal structures of 1-aminocyclohexane-1-carboxylic acid (H-Acc6-OH) and six derivatives (including dipeptides) have been determined. The derivatives are Boc-Acc6-OH, Boc-(Acc6)2-OH, Boc-L-Met-Acc6-OMe, ClCH2CO-Acc6-OH, p-BrC6H4CO-Acc6-OH oxazolone, and the symmetrical anhydride from Z-Acc6-OH, [(Z-Acc6)2O]. The cyclohexane rings in all the structures adopt an almost perfect chair conformation. The amino group occupies the axial position in six structures; the free amino acid is the only example where the carbonyl group occupies an axial position. The values determined for the torsion angles about the N–Cα(φ) and Cα–CO (ψ) bonds correspond to folded, potentially helical conformations for the Acc6 residue.
Resumo:
Crystallization of a TADDOL analogue results in an orthorhombic P2(1)2(1)2(1) form while the presence of a minute amount of a chiral impurity in the crystallization is found to be responsible for crystallization in a monoclinic P2(1) form.
Resumo:
l-Valyl-l-lysine hydrochloride, C11N3O3H23 HCl, rystallizes in the monoclinic space group P2, with a = 5.438(5), b = 14.188(5), c = 9.521(5) Å, β= 95.38(2)° and Z = 2. The crystal structure, solved by direct methods, refined to R = 0.036, using full matrix least-squares method. The peptide exists in a zwitterionic form, with the N atom of the lysine side-chain protonated. The two γ-carbons of the valine side-chain have positional disorder, giving rise to two conformations, χ111= -67.3 and 65.9°, one of which (65.9°) is sterically less favourable and has been found to be less popular amongst residues branching at β-C. The lysine side-chain has the geometry of g− tgt, not seen in crystal structures of the dipeptides reported so far. Interestingly, χ32 (63.6°) of lysine side-chain has a gauche+ conformation unlike in most of the other tructures, where it is trans. The neighbouring peptide molecules are hydrogen bonded in a head-to-tail fashion, a rather uncommon interaction in lysine peptide structures. The structure shows considerable similarity with that of l-Lys-l-Val HO in conformational angles and H-bond interactions [4].
Resumo:
Polyamines are some of the most important and ubiquitous small molecules that modulate several functions of plant, animal and bacterial cells. Despite the simplicity of their chemical structure, their specific interactions with other biomolecules cannot be explained solely on the basis of their electrostatic properties. To evolve a structural understanding on the specificity of these interactions it is necessary to determine the structure of complexes of polyamines with other, representative biomolecules. This paper reports the structure of the 1:2 complex of hexanediamine and L-glutamic acid. The complex crystallizes in the monoclonic space group P2(1) with a = 5.171(1) angstrom, b = 22.044(2) angstrom, c = 10.181(2) angstrom and beta = 104.51(1)-degrees. The structure was refined to an R factor of 6.6%. The structures of these complexes not only suggest the importance of hydrogen-bonding interactions of polyamines but also provide some insight into other complementary interactions probably important for the specificity of biomolecular interactions.
Resumo:
The thermal stability of ring-substituted arylammonium nitrates has been investigated using thermal methods of analysis. The decomposition temperature of meta- and para-substituted derivatives is found to be linearly related to the Hammett substituent constant σ. The activation energy for decomposition determined by isothermal gravimetry increases with the increasing basicity of the corresponding amine. The results suggest that the primary step in the decomposition process of these salts is proton abstraction by the anion from the arylammonium ion.
Resumo:
In Salmonella typhimurium, propionate is oxidized to pyruvate via the 2-methylcitric acid cycle. The last step of this cycle, the cleavage of 2-methylisocitrate to succinate and pyruvate, is catalysed by 2-methylisocitrate lyase (EC 4.1.3.30). Methylisocitrate lyase (molecular weight 32 kDa) with a C-terminal polyhistidine affinity tag has been cloned and overexpressed in Escherichia coli and purified and crystallized under different conditions using the hanging-drop vapour-diffusion technique. Crystals belong to the orthogonal space group P2(1)2(1)2(1), with unit-cell parameters a = 63.600, b = 100.670, c = 204.745 Angstrom. A complete data set to 2.5 Angstrom resolution has been collected using an image-plate detector system mounted on a rotating-anode X-ray generator.
Resumo:
The crystal and molecular structures of the photochromic compounds 2,5-dimethylisophthalaldehyde (I) and 5-isopropyl-2-methylisophthalaldehyde (II) have been determined by single crystal X-ray analyses. The intramolecular gamma-hydrogen abstraction process involved in the photoenolisation of I and II in the solid state has been rationalised in the light of relevant geometrical parameters.
Resumo:
The structure of cadaverine dihydrochloride monohydrate has been determined by X-ray crystallography with the following features: NH3+(CH2)5NH3+.2Cl-.H2O, formula weight 191.1, monoclinic, P2, a = 11.814(2) angstrom, b = 4.517(2) angstrom, c = 20.370(3) angstrom, beta = 106.56-degrees(1): V = 1041.9(2) angstrom3, lambda = 1.541 angstrom; mu = 53.4 1; T = 296-degrees; Z = 4, D(x) = 1.218 g.cm-3, R = 0.101 for 1383 observed reflections. The crystal is highly pseudosymmetric with 2 molecules of cadaverine, 4 chloride ions and 2 partially disordered water molecules present in the asymmetric unit. Though both the cadaverine molecules in the asymmetric unit have an all trans conformation, the carbon backbones are slightly bent. Between the concave surfaces of two bent cadaverine molecules exists water channels all along the short b axis. The water molecules present in the channels are partially disordered