92 resultados para Real invariants
Resumo:
This work is concerned with the interaction of a source-sink pair. The main parameters of the problem are source and sink flow rates, the axial and lateral separations of the source and sink, and the angle between the axes of source and sink. Of concern is the percentage of source fluid that enters the sink as a function of these parameters. The experiments have been carried using the source nozzle diameter of 6 mm and the sink pipe diameter of two sizes: 10 mm and 20 mm. The Reynolds numbers of the source jet is about 3200. The main diagnostics are flow visualization using dye, laser induced fluorescence (LIF), particle streak photographs and particle image velocimetry (Ply). To obtain the removal effectiveness (that is percentage of source fluid that is going through the sink pipe), titration method is used. The sink diameter and the angle between source and the sink axes do not influence efficiencies as do the sink flow rate and the lateral separation. Data from experiments have been consolidated so that these results can be used for designing sinks for removal of heat and pollutants. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
A numerically stable sequential Primal–Dual LP algorithm for the reactive power optimisation (RPO) is presented in this article. The algorithm minimises the voltage stability index C 2 [1] of all the load buses to improve the system static voltage stability. Real time requirements such as numerical stability, identification of the most effective subset of controllers for curtailing the number of controllers and their movement can be handled effectively by the proposed algorithm. The algorithm has a natural characteristic of selecting the most effective subset of controllers (and hence curtailing insignificant controllers) for improving the objective. Comparison with transmission loss minimisation objective indicates that the most effective subset of controllers and their solution identified by the static voltage stability improvement objective is not the same as that of the transmission loss minimisation objective. The proposed algorithm is suitable for real time application for the improvement of the system static voltage stability.
Resumo:
There has been substantial public debate recently on a host of issues such as climate change, genetically modified crops and nuclear power; a common theme running through these issues involves science and public policy. This note will be based broadly on three interlinked themes: growth of specialization in science, significant commercial interests pushing science and technology, and a checkered track record of the promises made and the broken-reality.
Resumo:
We associate a sheaf model to a class of Hilbert modules satisfying a natural finiteness condition. It is obtained as the dual to a linear system of Hermitian vector spaces (in the sense of Grothendieck). A refined notion of curvature is derived from this construction leading to a new unitary invariant for the Hilbert module. A division problem with bounds, originating in Douady's privilege, is related to this framework. A series of concrete computations illustrate the abstract concepts of the paper.
Resumo:
This paper presents a method for placement of Phasor Measurement Units, ensuring the monitoring of vulnerable buses which are obtained based on transient stability analysis of the overall system. Real-time monitoring of phase angles across different nodes, which indicates the proximity to instability, the very purpose will be well defined if the PMUs are placed at buses which are more vulnerable. The issue is to identify the key buses where the PMUs should be placed when the transient stability prediction is taken into account considering various disturbances. Integer Linear Programming technique with equality and inequality constraints is used to find out the optimal placement set with key buses identified from transient stability analysis. Results on IEEE-14 bus system are presented to illustrate the proposed approach.
Resumo:
An energy-spectrum bottleneck, a bump in the turbulence spectrum between the inertial and dissipation ranges, is shown to occur in the nonturbulent, one-dimensional, hyperviscous Burgers equation and found to be the Fourier-space signature of oscillations in the real-space velocity, which are explained by boundary-layer-expansion techniques. Pseudospectral simulations are used to show that such oscillations occur in velocity correlation functions in one- and three-dimensional hyperviscous hydrodynamical equations that display genuine turbulence. DOI: 10.1103/PhysRevLett.110.064501
Resumo:
A network of ship-mounted real-time Automatic Weather Stations integrated with Indian geosynchronous satellites Indian National Satellites (INSATs)] 3A and 3C, named Indian National Centre for Ocean Information Services Real-Time Automatic Weather Stations (I-RAWS), is established. The purpose of I-RAWS is to measure the surface meteorological-ocean parameters and transmit the data in real time in order to validate and refine the forcing parameters (obtained from different meteorological agencies) of the Indian Ocean Forecasting System (INDOFOS). Preliminary validation and intercomparison of analyzed products obtained from the National Centre for Medium Range Weather Forecasting and the European Centre for Medium-Range Weather Forecasts using the data collected from I-RAWS were carried out. This I-RAWS was mounted on board oceanographic research vessel Sagar Nidhi during a cruise across three oceanic regimes, namely, the tropical Indian Ocean, the extratropical Indian Ocean, and the Southern Ocean. The results obtained from such a validation and intercomparison, and its implications with special reference to the usage of atmospheric model data for forcing ocean model, are discussed in detail. It is noticed that the performance of analysis products from both atmospheric models is similar and good; however, European Centre for Medium-Range Weather Forecasts air temperature over the extratropical Indian Ocean and wind speed in the Southern Ocean are marginally better.
Resumo:
The key requirements for enabling real-time remote healthcare service on a mobile platform, in the present day heterogeneous wireless access network environment, are uninterrupted and continuous access to the online patient vital medical data, monitor the physical condition of the patient through video streaming, and so on. For an application, this continuity has to be sufficiently transparent both from a performance perspective as well as a Quality of Experience (QoE) perspective. While mobility protocols (MIPv6, HIP, SCTP, DSMIP, PMIP, and SIP) strive to provide both and do so, limited or non-availability (deployment) of these protocols on provider networks and server side infrastructure has impeded adoption of mobility on end user platforms. Add to this, the cumbersome OS configuration procedures required to enable mobility protocol support on end user devices and the user's enthusiasm to add this support is lost. Considering the lack of proper mobility implementations that meet the remote healthcare requirements above, we propose SeaMo+ that comprises a light-weight application layer framework, termed as the Virtual Real-time Multimedia Service (VRMS) for mobile devices to provide an uninterrupted real-time multimedia information access to the mobile user. VRMS is easy to configure, platform independent, and does not require additional network infrastructure unlike other existing schemes. We illustrate the working of SeaMo+ in two realistic remote patient monitoring application scenarios.
Resumo:
Real-time object tracking is a critical task in many computer vision applications. Achieving rapid and robust tracking while handling changes in object pose and size, varying illumination and partial occlusion, is a challenging task given the limited amount of computational resources. In this paper we propose a real-time object tracker in l(1) framework addressing these issues. In the proposed approach, dictionaries containing templates of overlapping object fragments are created. The candidate fragments are sparsely represented in the dictionary fragment space by solving the l(1) regularized least squares problem. The non zero coefficients indicate the relative motion between the target and candidate fragments along with a fidelity measure. The final object motion is obtained by fusing the reliable motion information. The dictionary is updated based on the object likelihood map. The proposed tracking algorithm is tested on various challenging videos and found to outperform earlier approach.
Resumo:
Detection of petroleum leakages in pipelines and storage tanks is a very important as it may lead to significant pollution of the environment, accidental hazards, and also it is a very important fuel resource. Petroleum leakage detection sensor based on fiber optics was fabricated by etching the fiber Bragg grating (FBG) to a region where the total internal reflection is affected. The experiment shows that the reflected Bragg's wavelength and intensity goes to zero when etched FBG is in air and recovers Bragg's wavelength and intensity when it is comes in contact with petroleum or any external fluid. This acts as high sensitive, fast response fluid optical switch in liquid level sensing, petroleum leakage detection etc. In this paper we present our results on using this technique in petroleum leakage detection.
Resumo:
Building integrated photovoltaic (BIPV) applications are gaining widespread popularity. The performance of any given BIPV system is dependent on prevalent meteorological factors, site conditions and system characteristics. Investigations pertaining to the performance assessment of photovoltaic (PV) systems are generally confined to either controlled environment-chambers or computer-based simulation studies. Such investigations fall short of providing a realistic insight into how a PV system actually performs real-time. Solar radiation and the PV cell temperature are amongst the most crucial parameters affecting PV output. The current paper deals with the real-time performance assessment of a recently commissioned 5.25 kW, BIPV system installed at the Center for Sustainable Technologies, Indian Institute of Science, Bangalore. The overall average system efficiency was found to be 6% for the period May 2011-April 2012. This paper provides a critical appraisal of PV system performance based on ground realities, particularly characteristic to tropical (moderate) regions such as Bangalore, India. (C) 2013 International Energy Initiative. Published by Elsevier Inc. All rights reserved.
Resumo:
We show how Majorana end modes can be generated in a one-dimensional system by varying some of the parameters in the Hamiltonian periodically in time. The specific model we consider is a chain containing spinless electrons with a nearest-neighbor hopping amplitude, a p-wave superconducting term, and a chemical potential; this is equivalent to a spin-1/2 chain with anisotropic XY couplings between nearest neighbors and a magnetic field applied in the (z) over cap direction. We show that varying the chemical potential (or magnetic field) periodically in time can produce Majorana modes at the ends of a long chain. We discuss two kinds of periodic driving, periodic delta-function kicks, and a simple harmonic variation with time. We discuss some distinctive features of the end modes such as the inverse participation ratio of their wave functions and their Floquet eigenvalues which are always equal to +/- 1 for time-reversal-symmetric systems. For the case of periodic delta-function kicks, we use the effective Hamiltonian of a system with periodic boundary conditions to define two topological invariants. The first invariant is a well-known winding number, while the second invariant has not appeared in the literature before. The second invariant is more powerful in that it always correctly predicts the numbers of end modes with Floquet eigenvalues equal to + 1 and -1, while the first invariant does not. We find that the number of end modes can become very large as the driving frequency decreases. We show that periodic delta-function kicks in the hopping and superconducting terms can also produce end modes. Finally, we study the effect of electron-phonon interactions (which are relevant at finite temperatures) and a random noise in the chemical potential on the Majorana modes.
Resumo:
This paper presents a comparative evaluation of the average and switching models of a dc-dc boost converter from the point of view of real-time simulation. Both the models are used to simulate the converter in real-time on a Field Programmable Gate Array (FPGA) platform. The converter is considered to function over a wide range of operating conditions, and could do transition between continuous conduction mode (CCM) and discontinuous conduction mode (DCM). While the average model is known to be computationally efficient from the perspective of off-line simulation, the same is shown here to consume more logical resources than the switching model for real-time simulation of the dc-dc converter. Further, evaluation of the boundary condition between CCM and DCM is found to be the main reason for the increased consumption of resources by the average model.