262 resultados para Quantum confinement
Resumo:
We study power dissipation for systems of multiple quantum wires meeting at a junction, in terms of a current splitting matrix (M) describing the junction. We present a unified framework for studying dissipation for wires with either interacting electrons (i.e., Tomonaga-Luttinger liquid wires with Fermi-liquid leads) or noninteracting electrons. We show that for a given matrix M, the eigenvalues of (MM)-M-T characterize the dissipation, and the eigenvectors identify the combinations of bias voltages which need to be applied to the different wires in order to maximize the dissipation associated with the junction. We use our analysis to propose and study some microscopic models of a dissipative junction which employ the edge states of a quantum Hall liquid. These models realize some specific forms of the M matrix whose entries depends on the tunneling amplitudes between the different edges.
Resumo:
We consider a suspended elastic rod under longitudinal compression. The compression can be used to adjust potential energy for transverse displacements from the harmonic to the double well regime. The two minima in potential energy curve describe two possible buckled states. Using transition state theory (TST) we have calculated the rate of conversion from one state to other. If the strain epsilon = 4 epsilon c the simple TST rate diverges. We suggest a method to correct this divergence for quantum calculations. We also find that zero point energy contributions can be quite large so that single mode calculations can lead to large errors in the rate.
Resumo:
In this paper, we study the thermoelectric power under strong magnetic field (TPSM) in quantum dots (QDs) of nonlinear optical, III-V, II-VI, GaP, Ge, Te, Graphite, PtSb2, zerogap, Lead Germanium Telluride, GaSb, stressed materials, Bismuth, IV-VI, II-V, Zinc and Cadmium diphosphides, Bi2Te3 and Antimony respectively. The TPSM in III-V, II-VI, IV-VI, HgTe/CdTe quantum well superlattices with graded interfaces and effective mass superlattices of the same materials together with the quantum dots of aforementioned superlattices have also been investigated in this context on the basis of respective carrier dispersion laws. It has been found that the TPSM for the said quantum dots oscillates with increasing thickness and decreases with increasing electron concentration in various manners and oscillates with film thickness, inverse quantizing magnetic field and impurity concentration for all types of superlattices with two entirely different signatures of quantization as appropriate in respective cases of the aforementioned quantized structures. The well known expression of the TPSM for wide-gap materials has been obtained as special case for our generalized analysis under certain limiting condition, and this compatibility is an indirect test of our generalized formalism. Besides, we have suggested the experimental method of determining the carrier contribution to elastic constants for nanostructured materials having arbitrary dispersion laws.
Resumo:
In a three player quantum `Dilemma' game each player takes independent decisions to maximize his/her individual gain. The optimal strategy in the quantum version of this game has a higher payoff compared to its classical counterpart. However, this advantage is lost if the initial qubits provided to the players are from a noisy source. We have experimentally implemented the three player quantum version of the `Dilemma' game as described by Johnson, [N.F. Johnson, Phys. Rev. A 63 (2001) 020302(R)] using nuclear magnetic resonance quantum information processor and have experimentally verified that the payoff of the quantum game for various levels of corruption matches the theoretical payoff. (c) 2007 Elsevier Inc. All rights reserved.
Resumo:
The coherent quantum evolution of a one-dimensional many-particle system after slowly sweeping the Hamiltonian through a critical point is studied using a generalized quantum Ising model containing both integrable and nonintegrable regimes. It is known from previous work that universal power laws of the sweep rate appear in such quantities as the mean number of excitations created by the sweep. Several other phenomena are found that are not reflected by such averages: there are two different scaling behaviors of the entanglement entropy and a relaxation that is power law in time rather than exponential. The final state of evolution after the quench is not characterized by any effective temperature, and the Loschmidt echo converges algebraically for long times, with cusplike singularities in the integrable case that are dynamically broadened by nonintegrable perturbations.
Resumo:
Designing an ultrahigh density linear superlattice array consisting of periodic blocks of different semiconductors in the strong confinement regime via a direct synthetic route remains an unachieved challenge in nanotechnology. We report a general synthesis route for the formulation of a large-area ultrahigh density superlattice array that involves adjoining multiple units of ZnS rods by prolate US particles at the tips. A single one-dimensional wire is 300-500 nm long and consists of periodic quantum wells with a barrier width of 5 nm provided by ZnS and a well width of 1-2 nm provided by CdS, defining a superlattice structure. The synthesis route allows for tailoring of ultranarrow laserlike emissions (fwhm approximate to 125 meV) originating from strong interwell energy dispersion along with control of the width, pitch, and registry of the superlattice assembly. Such an exceptional high-density superlattice array could form the basis of ultrahigh density memories in addition to offering opportunities for technological advancement in conventional heterojunction-based device applications.
Resumo:
(CH3)4NGeCl3 is prepared, characterized and studied using 1H NMR spin lattice relaxation time and second moment to understand the internal motions and quantum rotational tunneling. Proton second moment is measured at 7 MHz as function of temperature in the range 300-77 K and spin lattice relaxation time (T1) is measured at two Larmor frequencies, as a function of temperature in the range 270-17 K employing a homemade wide-line/pulsed NMR spectrometers. T1 data are analyzed in two temperature regions using relevant theoretical models. The relaxation in the higher temperatures (270-115 K) is attributed to the hindered reorientations of symmetric groups (CH3 and (CH3)4N). Broad asymmetric T1 minima observed below 115 K down to 17 K are attributed to quantum rotational tunneling of the inequivalent methyl groups.
Resumo:
In this paper we present and compare the results obtained from semi-classical and quantum mechanical simulation for a Double Gate MOSFET structure to analyze the electrostatics and carrier dynamics of this device. The geometries like gate length, body, thickness of this device have been chosen according to the ITRS specification for the different technology nodes. We have shown the extent of deviation between the semi-classical and quantum mechanical results and hence the need of quantum simulations for the promising nanoscale devices in the future technology nodes predicted in ITRS.
Resumo:
We study theoretically the destruction of spin nematic order due to quantum fluctuations in quasi-one-dimensional spin-1 magnets. If the nematic ordering is disordered by condensing disclinations, then quantum Berry phase effects induce dimerization in the resulting paramagnet. We develop a theory for a Landau-forbidden second order transition between the spin nematic and dimerized states found in recent numerical calculations. Numerical tests of the theory are suggested.
Resumo:
A Trotter product formula is established for unitary quantum stochastic processes governed by quantum stochastic differential equations with constant bounded coefficients.
Resumo:
In quantum theory, symmetry has to be defined necessarily in terms of the family of unit rays, the state space. The theorem of Wigner asserts that a symmetry so defined at the level of rays can always be lifted into a linear unitary or an antilinear antiunitary operator acting on the underlying Hilbert space. We present two proofs of this theorem which are both elementary and economical. Central to our proofs is the recognition that a given Wigner symmetry can, by post-multiplication by a unitary symmetry, be taken into either the identity or complex conjugation. Our analysis often focuses on the behaviour of certain two-dimensional subspaces of the Hilbert space under the action of a given Wigner symmetry, but the relevance of this behaviour to the larger picture of the whole Hilbert space is made transparent at every stage.
Resumo:
Within the Grassmannian U(2N)/U(N) x U(N) nonlinear sigma-model representation of localization, one can study the low-energy dynamics of both a free and interacting electron gas. We study the crossover between these two fundamentally different physical problems. We show how the topological arguments for the exact quantization of the Hall conductance are extended to include the Coulomb interaction problem. We discuss dynamical scaling and make contact with the theory of variable range hopping. (C) 2005 Pleiades Publishing, Inc.
Resumo:
H-1 NMR spin-lattice relaxation time measurements have been carried out in [(CH3)(4)N](2)SeO4 in the temperature range 389-6.6K to understand the possible phase transitions, internal motions and quantum rotational tunneling. A broad T, minimum observed around 280K is attributed to the simultaneous motions of CH3 and (CH3)(4)N groups. Magnetization recovery is found to be stretched exponential below 72 K with varying stretched exponent. Low-temperature T-1 behavior is interpreted in terms of methyl groups undergoing quantum rotational tunneling. (c) 2007 Elsevier Inc. All rights reserved.