70 resultados para Quantum Chromodynamics, Helicity Rates, One-Loop Corrections, Bremsstrahlung Contributions, Heavy Quarks, Standard Model


Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the most-studied signals for physics beyond the standard model in the production of gauge bosons in electron-positron collisions is due to the anomalous triple gauge boson couplings in the Z(gamma) final state. In this work, we study the implications of this at the ILC with polarized beams for signals that go beyond traditional anomalous triple neutral gauge boson couplings. Here we report a dimension-8 CP-conserving Z(gamma)Z vertex that has not found mention in the literature. We carry out a systematic study of the anomalous couplings in general terms and arrive at a classification. We then obtain linear-order distributions with and without CP violation. Furthermore, we place the study in the context of general BSM interactions represented by e(+)e(-)Z(gamma) contact interactions. We set up a correspondence between the triple gauge boson couplings and the four-point contact interactions. We also present sensitivities on these anomalous couplings, which will be achievable at the ILC with realistic polarization and luminosity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the renewed interest in vector-like fermion extensions of the Standard Model, we present here a study of multiple vector-like theories and their phenomenological implications. Our focus is mostly on minimal flavor conserving theories that couple the vector-like fermions to the SM gauge fields and mix only weakly with SM fermions so as to avoid flavor problems. We present calculations for precision electroweak and vector-like state decays, which are needed to investigate compatibility with currently known data. We investigate the impact of vector-like fermions on Higgs boson production and decay, including loop contributions, in a wide variety of vector-like extensions and their parameter spaces.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We update the constraints on two-Higgs-doublet models (2HDMs) focusing on the parameter space relevant to explain the present muon g - 2 anomaly, Delta alpha(mu), in four different types of models, type I, II, ``lepton specific'' (or X) and ``flipped'' (or Y). We show that the strong constraints provided by the electroweak precision data on the mass of the pseudoscalar Higgs, whose contribution may account for Delta alpha(mu), are evaded in regions where the charged scalar is degenerate with the heavy neutral one and the mixing angles alpha and beta satisfy the Standard Model limit beta - alpha approximate to pi/2. We combine theoretical constraints from vacuum stability and perturbativity with direct and indirect bounds arising from collider and B physics. Possible future constraints from the electron g - 2 are also considered. If the 126 GeV resonance discovered at the LHC is interpreted as the light CP-even Higgs boson of the 2HDM, we find that only models of type X can satisfy all the considered theoretical and experimental constraints.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Significant changes are reported in extreme rainfall characteristics over India in recent studies though there are disagreements on the spatial uniformity and causes of trends. Based on recent theoretical advancements in the Extreme Value Theory (EVT), we analyze changes in extreme rainfall characteristics over India using a high-resolution daily gridded (1 degrees latitude x 1 degrees longitude) dataset. Intensity, duration and frequency of excess rain over a high threshold in the summer monsoon season are modeled by non-stationary distributions whose parameters vary with physical covariates like the El-Nino Southern Oscillation index (ENSO-index) which is an indicator of large-scale natural variability, global average temperature which is an indicator of human-induced global warming and local mean temperatures which possibly indicate more localized changes. Each non-stationary model considers one physical covariate and the best chosen statistical model at each rainfall grid gives the most significant physical driver for each extreme rainfall characteristic at that grid. Intensity, duration and frequency of extreme rainfall exhibit non-stationarity due to different drivers and no spatially uniform pattern is observed in the changes in them across the country. At most of the locations, duration of extreme rainfall spells is found to be stationary, while non-stationary associations between intensity and frequency and local changes in temperature are detected at a large number of locations. This study presents the first application of nonstationary statistical modeling of intensity, duration and frequency of extreme rainfall over India. The developed models are further used for rainfall frequency analysis to show changes in the 100-year extreme rainfall event. Our findings indicate the varying nature of each extreme rainfall characteristic and their drivers and emphasize the necessity of a comprehensive framework to assess resulting risks of precipitation induced flooding. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Measurement of the self-coupling of the 125 GeV Higgs boson is one of the most crucial tasks for a high luminosity run of the LHC, and it can only be measured in the di-Higgs final state. In the minimal supersymmetric standard model, heavy CP even Higgs (H) can decay into a lighter 125 GeV Higgs boson (h) and, therefore, can influence the rate of di-Higgs production. We investigate the role of single H production in the context of measuring the self-coupling of h. We have found that the H -> hh decay can change the value of Higgs (h) self-coupling substantially, in a low tan beta regime where the mass of the heavy Higgs boson lies between 250 and 600 GeV and, depending on the parameter space, it may be seen as an enhancement of the self-coupling of the 125 GeV Higgs boson.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, an attempt has been made to prepare the seismic intensity map for south India considering the probable earthquakes in the region. Anbazhagan et al. (Nat Hazards 60:1325-1345, 2012) have identified eight probable future earthquake zones in south India based on rupture-based seismic hazard analysis. Anbazhagan et al. (Eng Geol 171:81-95, 2014) has estimated the maximum future earthquake magnitude at these eight zones using regional rupture character. In this study, the whole south India is divided into several grids of size 1(o) x 1(o) and the intensity at each grid point is calculated using the regional intensity model for the maximum earthquake magnitude at each of the eight zones. The intensity due to earthquakes at these zones is mapped and thus eight seismic intensity maps are prepared. The final seismic intensity map of south India is obtained by considering the maximum intensity at each grid point due to the estimated earthquakes. By looking at the seismic intensity map, one can expect slight to heavy damage due to the probable earthquake magnitudes. Heavy damage may happen close to the probable earthquake zones.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Affine transformations have proven to be very powerful for loop restructuring due to their ability to model a very wide range of transformations. A single multi-dimensional affine function can represent a long and complex sequence of simpler transformations. Existing affine transformation frameworks like the Pluto algorithm, that include a cost function for modern multicore architectures where coarse-grained parallelism and locality are crucial, consider only a sub-space of transformations to avoid a combinatorial explosion in finding the transformations. The ensuing practical tradeoffs lead to the exclusion of certain useful transformations, in particular, transformation compositions involving loop reversals and loop skewing by negative factors. In this paper, we propose an approach to address this limitation by modeling a much larger space of affine transformations in conjunction with the Pluto algorithm's cost function. We perform an experimental evaluation of both, the effect on compilation time, and performance of generated codes. The evaluation shows that our new framework, Pluto+, provides no degradation in performance in any of the Polybench benchmarks. For Lattice Boltzmann Method (LBM) codes with periodic boundary conditions, it provides a mean speedup of 1.33x over Pluto. We also show that Pluto+ does not increase compile times significantly. Experimental results on Polybench show that Pluto+ increases overall polyhedral source-to-source optimization time only by 15%. In cases where it improves execution time significantly, it increased polyhedral optimization time only by 2.04x.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we search for the regions of the phenomenological minimal supersymmetric standard model (pMSSM) parameter space where one can expect to have moderate Higgs mixing angle (alpha) with relatively light (up to 600 GeV) additional Higgses after satisfying the current LHC data. We perform a global fit analysis using most updated data (till December 2014) from the LHC and Tevatron experiments. The constraints coming from the precision measurements of the rare b-decays B-s -> mu(+)mu(-) and b -> s gamma are also considered. We find that low M-A(less than or similar to 350) and high tan beta(greater than or similar to 25) regions are disfavored by the combined effect of the global analysis and flavor data. However, regions with Higgs mixing angle alpha similar to 0.1-0.8 are still allowed by the current data. We then study the existing direct search bounds on the heavy scalar/pseudoscalar (H/A) and charged Higgs boson (H-+/-) masses and branchings at the LHC. It has been found that regions with low to moderate values of tan beta with light additional Higgses (mass <= 600 GeV) are unconstrained by the data, while the regions with tan beta > 20 are excluded considering the direct search bounds by the LHC-8 data. The possibility to probe the region with tan beta <= 20 at the high luminosity run of LHC are also discussed, giving special attention to the H -> hh, H/A -> t (t) over bar and H/A -> tau(+)tau(-) decay modes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose the generation of Standard Model fermion hierarchy by the extension of renormalizable SO(10) GUT with O(N (g) ) family gauge symmetry. In this scenario, Higgs representations of SO(10) also carry family indices and are called Yukawons. Vacuum expectation values of these Yukawon fields break GUT and family symmetry and generate MSSM Yukawa couplings dynamically. We have demonstrated this idea using Higgs irrep, ignoring the contribution of 1 2 0-plet which is, however, required for complete fitting of fermion mass-mixing data. The effective MSSM matter fermion couplings to the light Higgs pair are determined by the null eigenvectors of the MSSM-type Higgs doublet superfield mass matrix . A consistency condition on the doublet (1,2,+/- 1]) mass matrix ( 0) is required to keep one pair of Higgs doublets light in the effective MSSM. We show that the Yukawa structure generated by null eigenvectors of are of generic kind required by the MSSM. A hidden sector with a pair of (S (a b) ; I center dot (a b) ) fields breaks supersymmetry and facilitates 0. SUSY breaking is communicated via supergravity. In this scenario, matter fermion Yukawa couplings are reduced from 15 to just 3 parameters in MSGUT with three generations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the context of the minimal supersymmetric standard model (MSSM), we discuss the possibility of the lightest Higgs boson with mass M-h = 98 GeV to be consistent with the 2.3 sigma excess observed at the LEP in the decay mode e(+)e(-) -> Zh, with h -> b (b) over bar. In the same region of the MSSM parameter space, the heavier Higgs boson (H) with mass M-H similar to 125 GeV is required to be consistent with the latest data on Higgs coupling measurements at the end of the 7 + 8 TeV LHC run with 25 fb(-1) of data. While scanning the MSSM parameter space, we impose constraints coming from flavor physics, relic density of the cold dark matter as well as direct dark matter searches. We study the possibility of observing this light Higgs boson in vector boson fusion process and associated production with W/Z-boson at the high luminosity (3000 fb(-1)) run of the 14 TeV LHC. Our analysis shows that this scenario can hardly be ruled out even at the high luminosity run of the LHC. However, the precise measurement of the Higgs signal strength ratios can play a major role to distinguish this scenario from the canonical MSSM one.