162 resultados para Pumping machinery.
Resumo:
The evolution of the dipole mode (DM) events in the Indian Ocean is examined using an ocean model that is driven by the NCEP fluxes for the period 1975-1998. The positive DM events during 1997, 1994 and 1982 and negative DM events during 1996 and 1984-1985 are captured by the model and it reproduces both the surface and subsurface features associated with these events. In its positive phase, the DM is characterized by warmer than normal SST in the western Indian Ocean and cooler than normal SST in the eastern Indian Ocean. The DM events are accompanied by easterly wind anomalies along the equatorial Indian Ocean and upwelling-favorable alongshore wind anomalies along the coast of Sumatra. The Wyrtki jets are weak during positive DM events, and the thermocline is shallower than normal in the eastern Indian Ocean and deeper in the west. This anomaly pattern reverses during negative DM events. During the positive phase of the DM easterly wind anomalies excite an upwelling equatorial Kelvin wave. This Kelvin wave reflects from the eastern boundary as an upwelling Rossby wave which propagates westward across the equatorial Indian Ocean. The anomalies in the eastern Indian Ocean weaken after the Rossby wave passes. A similar process excites a downwelling Rossby wave during the negative phase. This Rossby wave is much weaker but wind forcing in the central equatorial Indian Ocean amplifies the downwelling and increases its westward phase speed. This Rossby wave initiates the deepening of the thermocline in the western Indian Ocean during the following positive phase of the DM. Rossby wave generated in the southern tropical Indian Ocean by Ekman pumping contributes to this warming. Concurrently, the temperature equation of the model shows upwelling and downwelling to be the most important mechanism during both positive events of 1994 and 1997. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
SecB is a homotetrameric cytosolic chaperone that forms part of the protein translocation machinery in E. coli. Due to SecB, nascent polypeptides are maintained in an unfolded translocation-competent state devoid of tertiary structure and thus are guided to the translocon. In vitro SecB rapidly binds to a variety of ligands in a non-native state. We have previously investigated the bound state conformation of the model substrate bovine pancreatic trypsin inhibitor (BPTI) as well as the conformation of SecB itself by using proximity relationships based on site-directed spin labeling and pyrene fluorescence methods. It was shown that SecB undergoes a conformational change during the process of substrate binding. Here, we generated SecB mutants containing but a single cysteine per subunit or an exposed highly reactive new cysteine after removal of the nearby intrinsic cysteines. Quantitative spin labeling was achieved with the methanethiosulfonate spin label (MTS) at positions C97 or E90C, respectively. Highfield (W-band) electron paramagnetic resonance (EPR) measurements revealed that with BPTI present the spin labels are exposed to a more polar/hydrophilic environment. Nanoscale distance measurements with double electron-electron resonance (DEER) were in excellent agreement with distances obtained by molecular modeling. Binding of BPTI also led to a slight change in distances between labels at C97 but not at E90C. While the shorter distance in the tetramer increased, the larger diagonal distance decreased. These findings can be explained by a widening of the tetrameric structure upon substrate binding much like the opening of two pairs of scissors.
Resumo:
We observe linewidths below the natural linewidth for a probe laser on a degenerate two-level F -> F' transition, when the same transition is driven by a strong control laser. We take advantage of the fact that each level of the transition is made of multiple magnetic sublevels, and use the phenomenon of electromagnetically induced transparency (EIT) or absorption ( EIA) in multilevel systems. Optical pumping by the control laser redistributes the population so that only a few sublevels contribute to the probe absorption, an explanation which is verified by a density-matrix analysis of the relevant sublevels. We observe more than a factor of 3 reduction in linewidth in the D(2) line of Rb in room-temperature vapor. Such subnatural features vastly increase the scope of applications of EIT, such as high-resolution spectroscopy and tighter locking of lasers to atomic transitions, since it is not always possible to find a suitable third level. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
MATLAB is an array language, initially popular for rapid prototyping, but is now being increasingly used to develop production code for numerical and scientific applications. Typical MATLAB programs have abundant data parallelism. These programs also have control flow dominated scalar regions that have an impact on the program's execution time. Today's computer systems have tremendous computing power in the form of traditional CPU cores and throughput oriented accelerators such as graphics processing units(GPUs). Thus, an approach that maps the control flow dominated regions to the CPU and the data parallel regions to the GPU can significantly improve program performance. In this paper, we present the design and implementation of MEGHA, a compiler that automatically compiles MATLAB programs to enable synergistic execution on heterogeneous processors. Our solution is fully automated and does not require programmer input for identifying data parallel regions. We propose a set of compiler optimizations tailored for MATLAB. Our compiler identifies data parallel regions of the program and composes them into kernels. The problem of combining statements into kernels is formulated as a constrained graph clustering problem. Heuristics are presented to map identified kernels to either the CPU or GPU so that kernel execution on the CPU and the GPU happens synergistically and the amount of data transfer needed is minimized. In order to ensure required data movement for dependencies across basic blocks, we propose a data flow analysis and edge splitting strategy. Thus our compiler automatically handles composition of kernels, mapping of kernels to CPU and GPU, scheduling and insertion of required data transfer. The proposed compiler was implemented and experimental evaluation using a set of MATLAB benchmarks shows that our approach achieves a geometric mean speedup of 19.8X for data parallel benchmarks over native execution of MATLAB.
Resumo:
Groundwater constitutes a vital natural resource for sustaining India’s agricultural economy and meeting the country’s social, ecological and environmental goals. It is a unique resource, widely available, providing security against droughts and yet it is closely linked to surface-water resources and the hydrological cycle. Its availability depends on geo-hydrological conditions and characteristics of aquifers, from deep to alluvium, sediment crystalline rocks to basalt formations; and agro-climate from humid to subhumid and semi-arid to arid. Its reliable supply, uniform quality and temperature, relative turbidity, pollution-safe, minimal evaporation losses, and low cost of development are attributes making groundwater more attractive compared to other resources. It plays a key role in the provision of safe drinking water to rural populations. For example, already almost 80% of domestic water use in rural areas in India is groundwater-supplied, and much of it is being supplied to farms, villages and small towns. Inadequate control of the use of groundwater, indiscriminate application of agrochemicals and unrestrained pollution of the rural environment by other human activities make groundwater usage unsustainable, necessitating proper management in the face of the twin demand for water of good quality for domestic supply and adequate supply for irrigation, ensuring equity, efficiency and sustainability of the resource. Groundwater irrigation has overtaken surface irrigation in the early 1980s, supported by well energization. It is estimated that there are about 24 million energised wells and tube wells now and it is driven by demand rather than availability, evident through the greater occurrence of wells in districts with high population densities. Apart from aquifer characteristics, land fragmentation and landholding size are the factors that decide the density of wells. The ‘rise and fall’ of local economies dependent on groundwater can be summarized as: the green revolution of 1980s, groundwaterbased agrarian boom, early symptoms of groundwater overdraft, and decline of the groundwater socio-ecology. The social characteristics and policy interventions typical of each stage provide a fascinating insight into the human-resource dynamics. This book is a compilation of nine research papers discussing various aspects of groundwater management. It attempts to integrate knowledge about the physical system, the socio-economic system, the institutional set-up and the policy environment to come out with a more realistic analysis of the situation with regard to the nature, characteristics and intensity of resource use, the size of the economy the use generates, and the negative socioeconomic consequences. Complex variables addressed in this regard focusing on northern Gujarat are the stock of groundwater available in the region, its hydrodynamics, its net outflows against inflows, the economics of its intensive use (particularly irrigation in semi-arid and arid regions), its criticality in the regional hydroecological regime, ethical aspects and social aspects of its use. The first chapter by Dinesh Kumar and Singh, dwells on complex groundwater socio-ecology of India, while emphasizing the need for policy measures to address indiscriminate over-exploitation of dwindling resources. The chapter also explores the nature of groundwater economy and the role of electricity prices on it. The next chapter on groundwater issue in north Gujarat provides a description of groundwater resource characteristics followed by a detailed analysis of the groundwater depletion and quality deterioration problems in the region and their undesirable consequences on the economy, ecosystem health and the society. Considering water-buyers and wellowning farmers individually, a methodology for economic valuation of groundwater in regions where its primary usage is in agriculture, and as assessment of the groundwater economy based on case studies from north Gujarat is presented in the fourth chapter. The next chapter focuses on the extent of dependency of milk production on groundwater, which includes the water embedded in green and dry fodder and animal feed. The study made a realistic estimate of irrigation water productivity in terms of the physics and economics of milk production. The sixth chapter analyses the extent of reduction in water usage, increase in yield and overall increase in physical productivity of alfalfa with the use of the drip irrigation system. The chapter also provides a detailed synthesis of the costs and benefits associated with the use of drip irrigation systems. A linear programmingbased optimization model with the objective to minimize groundwater use taking into account the interaction between two distinct components – farming and dairying under the constraints of food security and income stability for different scenarios, including shift in cropping pattern, introduction of water-efficient crops, water- saving technologies in addition to the ‘business as usual’ scenario is presented in the seventh chapter. The results show that sustaining dairy production in the region with reduced groundwater draft requires crop shifts and adoption of water-saving technologies. The eighth chapter provides evidences to prove that the presence of adequate economic incentive would encourage farmers to adopt water-saving irrigation devices, based on the findings of market research with reference to the level of awareness among farmers of technologies and the factors that decide the adoption of water-saving technologies. However, now the marginal cost of using electricity for agricultural pumping is almost zero. The economic incentives are strong and visible only when the farmers are either water-buyers or have to manage irrigation with limited water from tube-well partnerships. The ninth chapter explores the socio-economic viability of increasing the power tariff and inducing groundwater rationing as a tool for managing energy and groundwater demand, considering the current estimate of the country’s annual economic loss of Rs 320 billion towards electricity subsidy in the farm sector. The tenth chapter suggests private tradable property rights and development of water markets as the institutional tool for achieving equity, efficiency and sustainability of groundwater use. It identifies the externalities for local groundwater management and emphasizes the need for managing groundwater by local user groups, supported by a thorough analysis of groundwater socio-ecology in India. An institutional framework for managing the resource based on participatory approach that is capable of internalizing the externalities, comprising implementation of institutional and technical alternatives for resource management is also presented. Major findings of the analyses and key arguments in each chapter are summarized in the concluding chapter. Case studies of the social and economic benefits of groundwater use, where that use could be described as unsustainable, are interesting. The benefits of groundwater use are outlined and described with examples of social and economic impacts of groundwater and the negative aspects of groundwater development with the compilation of environmental problems based on up-to-date research results. This publication with a well-edited compilation of case studies is informative and constitutes a useful publication for students and professionals.
Resumo:
Context-sensitive points-to analysis is critical for several program optimizations. However, as the number of contexts grows exponentially, storage requirements for the analysis increase tremendously for large programs, making the analysis non-scalable. We propose a scalable flow-insensitive context-sensitive inclusion-based points-to analysis that uses a specially designed multi-dimensional bloom filter to store the points-to information. Two key observations motivate our proposal: (i) points-to information (between pointer-object and between pointer-pointer) is sparse, and (ii) moving from an exact to an approximate representation of points-to information only leads to reduced precision without affecting correctness of the (may-points-to) analysis. By using an approximate representation a multi-dimensional bloom filter can significantly reduce the memory requirements with a probabilistic bound on loss in precision. Experimental evaluation on SPEC 2000 benchmarks and two large open source programs reveals that with an average storage requirement of 4MB, our approach achieves almost the same precision (98.6%) as the exact implementation. By increasing the average memory to 27MB, it achieves precision upto 99.7% for these benchmarks. Using Mod/Ref analysis as the client, we find that the client analysis is not affected that often even when there is some loss of precision in the points-to representation. We find that the NoModRef percentage is within 2% of the exact analysis while requiring 4MB (maximum 15MB) memory and less than 4 minutes on average for the points-to analysis. Another major advantage of our technique is that it allows to trade off precision for memory usage of the analysis.
Resumo:
About a third of the human population is estimated to be infected with Mycobacterium tuberculosis. The bacterium displays an excellent adaptability to survive within the host macrophages. As the reactive environment of macrophages is capable of inducing DNA damage, the ability of the pathogen to safeguard its DNA against the damage is of paramount significance for its survival within the host. Analysis of the genome sequence has provided important insights into the DNA repair machinery of the pathogen, and the studies on DNA repair in mycobacteria have gained momentum in the past few years. The studies have revealed considerable differences in the mycobacterial DNA repair machinery when compared with those of the other bacteria. This review article focuses especially on the aspects of base excision, and nucleotide excision repair pathways in mycobacteria. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Intra-aortic balloon pumping is a counter pulsation technique for temporary circulatory assistance in cardiogenic shock and other low cardiac output conditions. Conventional systems use a balloon at the end of a catheter driven by a solenoid valve, controlled by patient's ECG or ventricular pressure signal. This results in time delay introducted by solenoid spool inertia, gas inertia, and hysteresis effects of the solenoid. Fluidics, because of their non-moving part operation and high switching speeds, minimizes the inertial effects while contributing high reliability. This communication describes a fluidic system developed for driving the balloon accepting electric control signals.
Resumo:
Null dereferences are a bane of programming in languages such as Java. In this paper we propose a sound, demand-driven, inter-procedurally context-sensitive dataflow analysis technique to verify a given dereference as safe or potentially unsafe. Our analysis uses an abstract lattice of formulas to find a pre-condition at the entry of the program such that a null-dereference can occur only if the initial state of the program satisfies this pre-condition. We use a simplified domain of formulas, abstracting out integer arithmetic, as well as unbounded access paths due to recursive data structures. For the sake of precision we model aliasing relationships explicitly in our abstract lattice, enable strong updates, and use a limited notion of path sensitivity. For the sake of scalability we prune formulas continually as they get propagated, reducing to true conjuncts that are less likely to be useful in validating or invalidating the formula. We have implemented our approach, and present an evaluation of it on a set of ten real Java programs. Our results show that the set of design features we have incorporated enable the analysis to (a) explore long, inter-procedural paths to verify each dereference, with (b) reasonable accuracy, and (c) very quick response time per dereference, making it suitable for use in desktop development environments.
Resumo:
Regulation of the transcription machinery is one of the many ways to achieve control of gene expression. This has been done either at the transcription initiation stage or at the elongation stage. Different methodologies are known to inhibit transcription initiation via targeting of double-stranded (ds) DNA by: (i) synthetic oligonucleotides, (ii) ds-DNA-specific, sequenceselective minor-groove binders (distamycin A), intercalators (daunomycin) combilexins and (iii) small molecule (peptide or intercalator)-oligonucleotide conjugates. In some cases, instead of ds-DNA, higher order G-quadruplex structures are formed at the start site of transcription. In this regard G-quadruplex DNA-specific small molecules play a significant role towards inhibition of the transcription machinery. Different types of designer DNA-binding agents act as powerful sequence-specific gene modulators, by exerting their effect from transcription regulation to gene modification. But most of these chemotherapeutic agents have serious side effects. Accordingly, there is always a challenge to design such DNA-binding molecules that should not only achieve maximum specific DNA-binding affinity, and cellular and nuclear transport activity, but also would not interfere with the functions of normal cells.
Resumo:
Over the past decade, many powerful data mining techniques have been developed to analyze temporal and sequential data. The time is now fertile for addressing problems of larger scope under the purview of temporal data mining. The fourth SIGKDD workshop on temporal data mining focused on the question: What can we infer about the structure of a complex dynamical system from observed temporal data? The goals of the workshop were to critically evaluate the need in this area by bringing together leading researchers from industry and academia, and to identify promising technologies and methodologies for doing the same. We provide a brief summary of the workshop proceedings and ideas arising out of the discussions.
Resumo:
Thermal management of distributed electronics similar to data centers is studied using a bi-disperse porous medium (BDPM) approach. The BDPM channel comprises heat generating micro-porous square blocks, separated by macro-pores. Laminar forced convection cooling fluid of Pr = 0.7 saturates both the micro- and macro-pores. Bi-dispersion effect is induced by varying the macro-pore volume fraction phi(E), and by changing the number of porous blocks N-2, both representing re-distribution of the electronics. When 0.2 <= phi(E) <= 0.86, the heat transfer No is enhanced twice (from similar to 550 to similar to 1100) while the pressure drop Delta p* reduces almost eightfold. For phi(E) < 0.5, No reduces quickly to reach a minimum at the mono -disperse porous medium (MDPM) limit (phi(E) -> 0). Compared to N-2 = 1 case, No for BDPM configuration is high when N-2 >> 1, i.e., the micro-porous blocks are many and well distributed. The Nu increase with Re changes from non-linear to linear as N-2 increases from 1 to 81, with corresponding insignificant pumping power increase. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
We consider a small extent sensor network for event detection, in which nodes periodically take samples and then contend over a random access network to transmit their measurement packets to the fusion center. We consider two procedures at the fusion center for processing the measurements. The Bayesian setting, is assumed, that is, the fusion center has a prior distribution on the change time. In the first procedure, the decision algorithm at the fusion center is network-oblivious and makes a decision only when a complete vector of measurements taken at a sampling instant is available. In the second procedure, the decision algorithm at the fusion center is network-aware and processes measurements as they arrive, but in a time-causal order. In this case, the decision statistic depends on the network delays, whereas in the network-oblivious case, the decision statistic does not. This yields a Bayesian change-detection problem with a trade-off between the random network delay and the decision delay that is, a higher sampling rate reduces the decision delay but increases the random access delay. Under periodic sampling, in the network-oblivious case, the structure of the optimal stopping rule is the same as that without the network, and the optimal change detection delay decouples into the network delay and the optimal decision delay without the network. In the network-aware case, the optimal stopping problem is analyzed as a partially observable Markov decision process, in which the states of the queues and delays in the network need to be maintained. A sufficient decision statistic is the network state and the posterior probability of change having occurred, given the measurements received and the state of the network. The optimal regimes are studied using simulation.
Resumo:
During summer, the northern Indian Ocean exhibits significant atmospheric intraseasonal variability associated with active and break phases of the monsoon in the 30-90 days band. In this paper, we investigate mechanisms of the Sea Surface Temperature (SST) signature of this atmospheric variability, using a combination of observational datasets and Ocean General Circulation Model sensitivity experiments. In addition to the previously-reported intraseasonal SST signature in the Bay of Bengal, observations show clear SST signals in the Arabian Sea related to the active/break cycle of the monsoon. As the atmospheric intraseasonal oscillation moves northward, SST variations appear first at the southern tip of India (day 0), then in the Somali upwelling region (day 10), northern Bay of Bengal (day 19) and finally in the Oman upwelling region (day 23). The Bay of Bengal and Oman signals are most clearly associated with the monsoon active/break index, whereas the relationship with signals near Somali upwelling and the southern tip of India is weaker. In agreement with previous studies, we find that heat flux variations drive most of the intraseasonal SST variability in the Bay of Bengal, both in our model (regression coefficient, 0.9, against similar to 0.25 for wind stress) and in observations (0.8 regression coefficient); similar to 60% of the heat flux variation is due do shortwave radiation and similar to 40% due to latent heat flux. On the other hand, both observations and model results indicate a prominent role of dynamical oceanic processes in the Arabian Sea. Wind-stress variations force about 70-100% of SST intraseasonal variations in the Arabian Sea, through modulation of oceanic processes (entrainment, mixing, Ekman pumping, lateral advection). Our similar to 100 km resolution model suggests that internal oceanic variability (i.e. eddies) contributes substantially to intraseasonal variability at small-scale in the Somali upwelling region, but does not contribute to large-scale intraseasonal SST variability due to its small spatial scale and random phase relation to the active-break monsoon cycle. The effect of oceanic eddies; however, remains to be explored at a higher spatial resolution.
Resumo:
Parkinsons disease (PD) is the second most prevalent progressive neurological disorder commonly associated with impaired mitochondrial function in dopaminergic neurons. Although familial PD is multifactorial in nature, a recent genetic screen involving PD patients identified two mitochondrial Hsp70 variants (P509S and R126W) that are suggested in PD pathogenesis. However, molecular mechanisms underlying how mtHsp70 PD variants are centrally involved in PD progression is totally elusive. In this article, we provide mechanistic insights into the mitochondrial dysfunction associated with human mtHsp70 PD variants. Biochemically, the R126W variant showed severely compromised protein stability and was found highly susceptible to aggregation at physiological conditions. Strikingly, on the other hand, the P509S variant exhibits significantly enhanced interaction with J-protein cochaperones involved in folding and import machinery, thus altering the overall regulation of chaperone-mediated folding cycle and protein homeostasis. To assess the impact of mtHsp70 PD mutations at the cellular level, we developed yeast as a model system by making analogous mutations in Ssc1 ortholog. Interestingly, PD mutations in yeast (R103W and P486S) exhibit multiple in vivo phenotypes, which are associated with omitochondrial dysfunction', including compromised growth, impairment in protein translocation, reduced functional mitochondrial mass, mitochondrial DNA loss, respiratory incompetency and increased susceptibility to oxidative stress. In addition to that, R103W protein is prone to aggregate in vivo due to reduced stability, whereas P486S showed enhanced interaction with J-proteins, thus remarkably recapitulating the cellular defects that are observed in human PD variants. Taken together, our findings provide evidence in favor of direct involvement of mtHsp70 as a susceptibility factor in PD.