206 resultados para Propagation velocity
Resumo:
This paper deals with the development of simplified semi-empirical relations for the prediction of residual velocities of small calibre projectiles impacting on mild steel target plates, normally or at an angle, and the ballistic limits for such plates. It has been shown, for several impact cases for which test results on perforation of mild steel plates are available, that most of the existing semi-empirical relations which are applicable only to normal projectile impact do not yield satisfactory estimations of residual velocity. Furthermore, it is difficult to quantify some of the empirical parameters present in these relations for a given problem. With an eye towards simplicity and ease of use, two new regression-based relations employing standard material parameters have been discussed here for predicting residual velocity and ballistic limit for both normal and oblique impact. The latter expressions differ in terms of usage of quasi-static or strain rate-dependent average plate material strength. Residual velocities yielded by the present semi-empirical models compare well with the experimental results. Additionally, ballistic limits from these relations show close correlation with the corresponding finite element-based predictions.
Resumo:
This paper presents the effect of nonlocal scaling parameter on the terahertz wave propagation in fluid filled single walled carbon nanotubes (SWCNTs). The SWCNT is modeled as a Timoshenko beam,including rotary inertia and transverse shear deformation by considering the nonlocal scale effects. A uniform fluid velocity of 1000 m/s is assumed. The analysis shows that, for a fluid filled SWCNT, the wavenumbers of flexural and shear waves will increase and the corresponding wave speeds will decrease as compared to an empty SWCNT. The nonlocal scale parameter introduces certain band gap region in both flexural and shear wave mode where no wave propagation occurs. This is manifested in the wavenumber plots as the region where the wavenumber tends to infinite (or wave speed tends to zero). The frequency at which this phenomenon occurs is called the ``escape frequency''. The effect of fluid density on the terahertz wave propagation in SWCNT is also studied and the analysis shows that as the fluid becomes denser, the wave speeds will decrease. The escape frequency decreases with increase in nonlocal scaling parameter, for both wave modes. We also show that the effect of fluid density and velocity are negligible on the escape frequencies of flexural and shear wave modes. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Based on the recently found closed-form expressions of the Boltzmann collision integrals in a rigid-sphere gas for multi-Maxwellian distributions, a few typical sets of contour surfaces of the integrals in the space of molecular velocities are presented. These show graphically the tendency toward equilibrium under the influence of collisions. A brief preliminary comparison with Monte Carlo results is also given.
Resumo:
Close to the Mott transition, lattice degrees of freedom react to the softening of electron degrees of freedom. This results in a change of lattice spacing, a diverging compressibility, and a critical anomaly of the sound velocity. These effects are investigated within a simple model, in the framework of dynamical mean-field theory. The results compare favorably to recent experiments on the layered organic-conductor kappa-(BEDT-TTF)(2)Cu[N(CN)(2)]Cl. We predict that effects of a similar magnitude are expected for V2O3, despite the much larger value of the elastic modulus of this material.
Resumo:
A study has been made of the problem of steady, one-dimensional, laminar flame propagation in premixed gases, with the Lewis number differing from (and equal to) unity. Analytical solutions, using the method of matched asymptotic expansions, have been obtained for large activation energies. Numerical solutions have been obtained for a wide range of the reduced activation temperature parameter (n {geometrically equal to} E/RTb), and the Lewis number δ. The studies reveal that the flame speed eigenvalue is linear in Lewis number for first order and quadratic in Lewis number for second order reactions. For a quick determination of flame speeds, with reasonable accuracy, a simple rule, expressing the flame speed eigenvalue as a function of the Lewis number and the centroid of the reaction rate function, is proposed. Comparisons have been made with some of the earlier works, for both first and second order reactions.
Resumo:
The instability of coupled longitudinal and transverse electromagnetic modes associated with long wavelengths is studied in bounded streaming plasmas. The main conclusions are as follows: (i) For long waves for which O (k 2)=0, in the absence of relative streaming motion of electrons and ions and aωp/c<0.66, the whole spectrum of harmonic waves is excited due to finite temperature and boundary effects consisting of two subseries. One of these subseries can be identified with Tonks-Dattner resonance oscillations for the electrons, and arises primarily due to the electrons with frequencies greater than the electrostatic plasma frequency corresponding to the electron density in the midplane in the undisturbed state. The other series arises primarily due to ion motion. When aωp/c>0.66, in addition to the above spectrum of harmonic waves, the system admits an infinite number of growing and decaying waves. The instability associated with these modes is found to arise due to the interaction of the waves inside the plasma with the external electromagnetic field. (ii) For modes with comparatively shorter wavelengths for which O (k3)=0, the coupling due to finite temperature sets in, and it is found that the two series of harmonic waves obtained in (i) deriving energy from the transverse modes also become unstable. Thus, for these wavelengths the system admits three sets of growing and decaying modes, first two for all values of aωp/c and the third for (aωp/c) > 0.66. (iii) The presence of streaming velocities introduces various other coupling mechanisms, and we find that even for the wavelengths for which O (k2)=0, we get three sets of growing and decaying waves. The numerical values for the growth rates show that the streaming velocities enhance the growth rates of instability significantly.
Resumo:
Equations proposed in previous work on the non-linear motion of a string show a basic disagreement, which is here traced to an assumption about the longitudinal displacement u. It is shown that it is neither necessary nor justifiable to assume that u is zero; and also that the velocity of propagation of u disturbances in a string is different from that in an infinite medium, although this difference is usually negligible. After formulating the exact equations of motion for the string, a systematic procedure is described for obtaining approximations to these equations to any order, making only the assumption that the strain in the material of the string is small. The lowest order equations in this scheme are non-linear, and are used to describe the response of a string near resonance. Finally, it is shown that in the absence of damping, planar motion of a string is always unstable at sufficiently high amplitudes, the critical amplitude falling to zero at the natural frequency and its subharmonics. The effect of slight damping on this instability is also discussed.
Resumo:
The aim of the paper is to investigate the propagation of a pulse in a micropolar fluid contained in a visco-elastic membrane. It was undertaken with a view to study how closely we can approximate the flow of blood in arteries by the above model. We find that for large Reynolds number, the effect of micropolarity is hardly perceptible, whereas for small Reynolds numbers it is of considerable importance.
Resumo:
A study of compression waves produced in a viscous heat-conducting gas by the impulsive start of a one-dimensional piston and by the inpulsive change of piston wall temperature is made using Laplace Transform Technique for Prandt1 number unity. Expressions for velocity, temperature and density have also been obtained using small-time expansion procedure in this case. For arbitrary Prandt1 number solutions have been developed using large-time expansion procedure. A number of graphs exhibiting the distribution of the fluid velocity, temperature and density have been drawn.
Resumo:
In this paper we have investigated the instability of the self-similar flow behind the boundary of a collapsing cavity. The similarity solutions for the flow into a cavity in a fluid obeying a gas law p = Kργ, K = constant and 7 ≥ γ > 1 has been solved by Hunter, who finds that for the same value of γ there are two self-similar flows, one with accelerating cavity boundary and other with constant velocity cavity boundary. We find here that the first of these two flows is unstable. We arrive at this result only by studying the propagation of disturbances in the neighbourhood of the singular point.
Resumo:
Ultrasonic absorption has been studied by the pulse technique in the binary mixtures of acetic acid in water, methyl and ethyl alcohols and covers a range of 2 to 26 Mc/s. The mixtures are studied from 0 to 100% by weight of the acid. In all the three mixtures, two relaxation processes are observed, the first occurring below the frequency range of the study. The second one occurs near 20 Mc/s in the acid-water mixtures and at much higher frequencies in the other cases. It is qualitatively explained that the monomer-dimer reaction of the acetic acid giving a relaxation near 1 Mc/s has shifted to a higher frequency when mixed in a solvent thus giving rise to a second relaxation in the mixtures.
Resumo:
In this work, a method is proposed for rolling contact fatigue crack propagation analysis using contact and fracture theories in conjunction with fatigue laws. The proposed method is used in the fatigue analysis of rocker and roller–rocker bearings of a railway open web girder bridge which is instrumented with strain gages. Using a contact algorithm based on the minimum energy principle for bodies in rolling contact with dry friction, the normal and tangential pressure distribution are computed. It is seen that the most critical location of a crack in bearings is at a point very close to the contact region, as expected.
Resumo:
In this work, a method is proposed for rolling contact fatigue crack propagation analysis using contact and fracture theories in conjunction with fatigue laws. The proposed method is used in the fatigue analysis of rocker and roller-rocker bearings of a railway open web girder bridge which is instrumented with strain gages. Using a contact algorithm based on the minimum energy principle for bodies in rolling contact with dry friction, the normal and tangential pressure distribution are computed. It is seen that the most critical location of a crack in bearings is at a point very close to the contact region, as expected. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
This paper describes the design and development of a Fiber Bragg Grating (FBG) sensor system for monitoring tsunami waves generated in the deep ocean. An experimental setup was designed and fabricated to simulate the generation and propagation of a tsunami wave. The characteristics and efficiency of the developed FBG sensor was evaluated with a standard commercial Digiquartz sensor. For real time monitoring of tsunami waves, FBG sensors bonded to a cantilever is used and the wavelength shifts (Delta lambda(B)) in the reflected spectra resulting from the strain/pressure imparted on the FBGs have been recorded using a high-speed Micron Optics FBG interrogation system. The parameters sensed are the signal burst during tsunami generation and pressure variations at different places as the tsunami wave propagates away from the source of generation. The results obtained were compared with the standard commercial sensor used in tsunami detection. The observations suggest that the FBG sensor was highly sensitive and free from many of the constraints associated with the commercial tsunameter.