89 resultados para Production externalities
Resumo:
Energy and energy services are the backbone of growth and development in India and is increasingly dependent upon the use of fossil based fuels that lead to greenhouse gases (GHG) emissions and related concerns. Algal biofuels are being evolved as carbon (C)-neutral alternative biofuels. Algae are photosynthetic microorganisms that convert sunlight, water and carbon dioxide (CO2) to various sugars and lipids Tri-Acyl-Glycols (TAG) and show promise as an alternative, renewable and green fuel source for India. Compared to land based oilseed crops algae have potentially higher yields (5-12 g/m(2)/d) and can use locations and water resources not suited for agriculture. Within India, there is little additional land area for algal cultivation and therefore needs to be carried out in places that are already used for agriculture, e.g. flooded paddy lands (20 Mha) with village level technologies and on saline wastelands (3 Mha). Cultivating algae under such conditions requires novel multi-tier, multi-cyclic approaches of sharing land area without causing threats to food and water security as well as demand for additional fertilizer resources by adopting multi-tier cropping (algae-paddy) in decentralized open pond systems. A large part of the algal biofuel production is possible in flooded paddy crop land before the crop reaches dense canopies, in wastewaters (40 billion litres per day), in salt affected lands and in nutrient/diversity impoverished shallow coastline fishery. Mitigation will be achieved through avoidance of GHG, C-capture options and substitution of fossil fuels. Estimates made in this paper suggest that nearly half of the current transportation petro-fuels could be produced at such locations without disruption of food security, water security or overall sustainability. This shift can also provide significant mitigation avenues. The major adaptation needs are related to socio-technical acceptance for reuse of various wastelands, wastewaters and waste-derived energy and by-products through policy and attitude change efforts.
Resumo:
We consider the speech production mechanism and the asso- ciated linear source-filter model. For voiced speech sounds in particular, the source/glottal excitation is modeled as a stream of impulses and the filter as a cascade of second-order resonators. We show that the process of sampling speech signals can be modeled as filtering a stream of Dirac impulses (a model for the excitation) with a kernel function (the vocal tract response),and then sampling uniformly. We show that the problem of esti- mating the excitation is equivalent to the problem of recovering a stream of Dirac impulses from samples of a filtered version. We present associated algorithms based on the annihilating filter and also make a comparison with the classical linear prediction technique, which is well known in speech analysis. Results on synthesized as well as natural speech data are presented.
Resumo:
The present work involves a computational study of soot formation and transport in case of a laminar acetylene diffusion flame perturbed by a co nvecting line vortex. The topology of the soot contours (as in an earlier experimental work [4]) have been investigated. More soot was produced when vortex was introduced from the air si de in comparison to a fuel side vortex. Also the soot topography was more diffused in case of the air side vortex. The computational model was found to be in good agreement with the ex perimental work [4]. The computational simulation enabled a study of the various parameters affecting soot transport. Temperatures were found to be higher in case of air side vortex as compared to a fuel side vortex. In case of the fuel side vortex, abundance of fuel in the vort ex core resulted in stoichiometrically rich combustion in the vortex core, and more discrete so ot topography. Overall soot production too was low. In case of the air side vortex abundan ce of air in the core resulted in higher temperatures and more soot yield. Statistical techniques like probability density fun ction, correlation coefficient and conditional probability function were introduced to explain the transient dependence of soot yield and transport on various parameters like temperature, a cetylene concentration.
Resumo:
The present work involves a computational study of soot formation and transport in case of a laminar acetylene diffusion flame perturbed by a convecting line vortex. The topology of the soot contours (as in an earlier experimental work [4]) have been investigated. More soot was produced when vortex was introduced from the air side in comparison to a fuel side vortex. Also the soot topography was more diffused in case of the air side vortex. The computational model was found to be in good agreement with the experimental work [4]. The computational simulation enabled a study of the various parameters affecting soot transport. Temperatures were found to be higher in case of air side vortex as compared to a fuel side vortex. In case of the fuel side vortex, abundance of fuel in the vort ex core resulted in stoichiometrically rich combustion in the vortex core, and more discrete soot topography. Overall soot production too was low. In case of the air side vortex abundance of air in the core resulted in higher temperatures and more soot yield. Statistical techniques like probability density function, correlation coefficient and conditional probability function were introduced to explain the transient dependence of soot yield and transport on various parameters like temperature, a cetylene concentration.
Resumo:
Background: A better understanding of the quality of cellular immune responses directed against molecularly defined targets will guide the development of TB diagnostics and identification of molecularly defined, clinically relevant M.tb vaccine candidates. Methods: Recombinant proteins (n = 8) and peptide pools (n = 14) from M. tuberculosis (M.tb) targets were used to compare cellular immune responses defined by IFN-gamma and IL-17 production using a Whole Blood Assay (WBA) in a cohort of 148 individuals, i.e. patients with TB + (n = 38), TB- individuals with other pulmonary diseases (n = 81) and individuals exposed to TB without evidence of clinical TB (health care workers, n = 29). Results: M.tb antigens Rv2958c (glycosyltransferase), Rv2962c (mycolyltransferase), Rv1886c (Ag85B), Rv3804c (Ag85A), and the PPE family member Rv3347c were frequently recognized, defined by IFN-gamma production, in blood from healthy individuals exposed to M.tb (health care workers). A different recognition pattern was found for IL-17 production in blood from M.tb exposed individuals responding to TB10.4 (Rv0288), Ag85B (Rv1886c) and the PPE family members Rv0978c and Rv1917c. Conclusions: The pattern of immune target recognition is different in regard to IFN-gamma and IL-17 production to defined molecular M.tb targets in PBMCs from individuals frequently exposed to M.tb. The data represent the first mapping of cellular immune responses against M.tb targets in TB patients from Honduras.
Resumo:
We survey the expected polarization of the top produced in the decay of a scalar top quark, t -> t((chi) over tildei)(0), i = 1 - 2. The phenomenology is quite interesting, since the expected polarization depends both on the mixing in the stop and neutralino sectors and on the mass differences between the stop and the neutralino. We find that a mixed stop behaves almost like a right-handed stop due to the larger hypercharge that enters the stop/top/gaugino coupling and that these polarisation effects disappear, when m((t) over tilde1) approximate to m(t) +m((chi) over tildei)(0). After a discussion on the expected top polarization from the decay of a scalar top quark, we focus on the interplay of polarization and kinematics at the LHC. We discuss different probes of the top polarization in terms of lab-frame observables. We find that these observables faithfully reflect the polarization of the parent top-quark, but also have a non-trivial dependence on the kinematics of the stop production and decay process. In addition, we illustrate the effect of top polarization on the energy and transverse momentum of the decay lepton in the laboratory frame. Our results show that both spectra are softened substantially in case of a negatively polarized top, particularly for a large mass difference between the stop and the neutralino. Thus, the search strategies, and the conclusions that can be drawn from them, depends not just on the mass difference m((t) over tilde) - m((chi) over tildei)(0) due to the usual kinematic effects but also on the effects of top polarization on the decay kinematics the extent of which depends in turn on the said mass difference.
Resumo:
We study the production of the lightest neutralinos in the process e(+)e(-) -> chi(0)(1)chi(0)(1)gamma in supersymmetric grand unified models for the International Linear Collider energies with longitudinally polarized beams. We consider cases where the standard model gauge group is unified into the grand unified gauge groups SU(5), or SO(10). We have carried out a comprehensive study of this process in the SU(5) and SO(10) grand unified theories which includes the QED radiative corrections. We compare and contrast the dependence of the signal cross section on the grand unified gauge group, and on the different representations of the grand unified gauge group, when the electron and positron beams are longitudinally polarized. To assess the feasibility of experimentally observing the radiative production process, we have also considered in detail the background to this process coming from the radiative neutrino production process e(+)e(-)-> nu(nu) over bar gamma with longitudinally polarized electron and positron beams. In addition we have also considered the supersymmetric background coming from the radiative production of scalar neutrinos in the process e(+)e(-) -> (nu) over tilde(nu) over tilde*gamma with longitudinally polarized beams. The process can be a major background to the radiative production of neutralinos when the scalar neutrinos decay invisibly.
Resumo:
This study presents the synthesis, characterization, and kinetics of steam reforming of methane and water gas shift (WGS) reactions over highly active and coke resistant Zr0.93Ru0.05O2-delta. The catalyst showed high activity at low temperatures for both the reactions. For WGS reaction, 99% conversion of CO with 100% H-2 selectivity was observed below 290 degrees C. The detailed kinetic studies including influence of gas phase product species, effect of temperature and catalyst loading on the reaction rates have been investigated. For the reforming reaction, the rate of reaction is first order in CH4 concentration and independent of CO and H2O concentration. This indicates that the adsorptive dissociation of CH4 is the rate determining step. The catalyst also showed excellent coke resistance even under a stoichiometric steam/carbon ratio. A lack of CO methanation activity is an important finding of present study and this is attributed to the ionic nature of Ru species. The associative mechanism involving the surface formate as an intermediate was used to correlate experimental data. Copyright (C) 2013, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
Resumo:
The paper focuses on the use of oxygen and steam as the gasification agents in the thermochemical conversion of biomass to produce hydrogen rich syngas, using a downdraft reactor configuration. Performance of the reactor is evaluated for different equivalence ratios (ER), steam to biomass ratios (SBR) and moisture content in the fuel. The results are compared and evaluated with chemical equilibrium analysis and reaction kinetics along with the results available in the literature. Parametric study suggests that, with increase in SBR, hydrogen fraction in the syngas increases but necessitates an increase in the ER to maintain reactor temperature toward stable operating conditions. SBR is varied from 0.75 to 2.7 and ER from 0.18 to 0.3. The peak hydrogen yield is found to be 104g/kg of biomass at SBR of 2.7. Further, significant enhancement in H-2 yield and H-2 to CO ratio is observed at higher SBR (SBR=1.5-2.7) compared with lower range SBR (SBR=0.75-1.5). Experiments were conducted using wet wood chips to induce moisture into the reacting system and compare the performance with dry wood with steam. The results clearly indicate the both hydrogen generation and the gasification efficiency ((g)) are better in the latter case. With the increase in SBR, gasification efficiency ((g)) and lower heating value (LHV) tend to reduce. Gasification efficiency of 85.8% is reported with LHV of 8.9MJNm(-3) at SBR of 0.75 compared with 69.5% efficiency at SBR of 2.5 and lower LHV of 7.4 at MJNm(-3) at SBR of 2.7. These are argued on the basis of the energy required for steam generation and the extent of steam consumption during the reaction, which translates subsequently in the LHV of syngas. From the analysis of the results, it is evident that reaction kinetics plays a crucial role in the conversion process. The study also presents the importance of reaction kinetics, which controls the overall performance related to efficiency, H-2 yield, H-2 to CO fraction and LHV of syngas, and their dependence on the process parameters SBR and ER. Copyright (c) 2013 John Wiley & Sons, Ltd.
Resumo:
This paper describes a spatio-temporal registration approach for speech articulation data obtained from electromagnetic articulography (EMA) and real-time Magnetic Resonance Imaging (rtMRI). This is motivated by the potential for combining the complementary advantages of both types of data. The registration method is validated on EMA and rtMRI datasets obtained at different times, but using the same stimuli. The aligned corpus offers the advantages of high temporal resolution (from EMA) and a complete mid-sagittal view (from rtMRI). The co-registration also yields optimum placement of EMA sensors as articulatory landmarks on the magnetic resonance images, thus providing richer spatio-temporal information about articulatory dynamics. (C) 2014 Acoustical Society of America
Resumo:
We consider ZH and WH production at the Large Hadron Collider, where the Higgs decays to a b (b) over bar pair. We use jet substructure techniques to reconstruct the Higgs boson and construct angular observables involving leptonic decay products of the vector bosons. These efficiently discriminate between the tensor structure of the HVV vertex expected in the Standard Model and that arising from possible new physics, as quantified by higher dimensional operators. This can then be used to examine the CP nature of the Higgs as well as CP mixing effects in the HZZ and HWW vertices separately. (C) 2014 Elsevier B.V.
Resumo:
Taxol (R) (generic name paclitaxel) represents one of the most clinically valuable natural products known to mankind in the recent past. More than two decades have elapsed since the notable discovery of the first Taxol (R) producing endophytic fungus, which was followed by a plethora of reports on other endophytes possessing similar biosynthetic potential. However, industrial-scale Taxol (R) production using fungal endophytes, although seemingly promising, has not seen the light of the day. In this opinion article, we embark on the current state of knowledge on Taxol (R) biosynthesis focusing on the chemical ecology of its producers, and ask whether it is actually possible to produce Taxol (R) using endophyte biotechnology. The key problems that have prevented the exploitation of potent endophytic fungi by industrial bioprocesses for sustained production of Taxol (R) are discussed.
Resumo:
USC-TIMIT is an extensive database of multimodal speech production data, developed to complement existing resources available to the speech research community and with the intention of being continuously refined and augmented. The database currently includes real-time magnetic resonance imaging data from five male and five female speakers of American English. Electromagnetic articulography data have also been presently collected from four of these speakers. The two modalities were recorded in two independent sessions while the subjects produced the same 460 sentence corpus used previously in the MOCHA-TIMIT database. In both cases the audio signal was recorded and synchronized with the articulatory data. The database and companion software are freely available to the research community. (C) 2014 Acoustical Society of America.