79 resultados para Prediction of scholastic success


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present paper, the constitutive model is proposed for cemented soils, in which the cementation component and frictional component are treated separately and then added together to get overall response. The modified Cam clay is used to predict the frictional resistance and an elasto-plastic strain softening model is proposed for the cementation component. The rectangular isotropic yield curve proposed by Vatsala (1995) for the bond component has been modified in order to account for the anisotropy generally observed in the case of natural soft cemented soils. In this paper, the model proposed is used to predict the experimental results of extension tests on the soft cemented soils whereas compression test results are presented elsewhere. The model predictions compare quite satisfactorily with the observed response. A few input parameters are required which are well defined and easily determinable and the model uses associated flow rule.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work focuses on the formulation of an asymptotically correct theory for symmetric composite honeycomb sandwich plate structures. In these panels, transverse stresses tremendously influence design. The conventional 2-D finite elements cannot predict the thickness-wise distributions of transverse shear or normal stresses and 3-D displacements. Unfortunately, the use of the more accurate three-dimensional finite elements is computationally prohibitive. The development of the present theory is based on the Variational Asymptotic Method (VAM). Its unique features are the identification and utilization of additional small parameters associated with the anisotropy and non-homogeneity of composite sandwich plate structures. These parameters are ratios of smallness of the thickness of both facial layers to that of the core and smallness of 3-D stiffness coefficients of the core to that of the face sheets. Finally, anisotropy in the core and face sheets is addressed by the small parameters within the 3-D stiffness matrices. Numerical results are illustrated for several sample problems. The 3-D responses recovered using VAM-based model are obtained in a much more computationally efficient manner than, and are in agreement with, those of available 3-D elasticity solutions and 3-D FE solutions of MSC NASTRAN. (c) 2012 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Resistance to therapy limits the effectiveness of drug treatment in many diseases. Drug resistance can be considered as a successful outcome of the bacterial struggle to survive in the hostile environment of a drug-exposed cell. An important mechanism by which bacteria acquire drug resistance is through mutations in the drug target. Drug resistant strains (multi-drug resistant and extensively drug resistant) of Mycobacterium tuberculosis are being identified at alarming rates, increasing the global burden of tuberculosis. An understanding of the nature of mutations in different drug targets and how they achieve resistance is therefore important. An objective of this study is to first decipher sequence as well as structural bases for the observed resistance in known drug resistant mutants and then to predict positions in each target that are more prone to acquiring drug resistant mutations. A curated database containing hundreds of mutations in the 38 drug targets of nine major clinical drugs, associated with resistance is studied here. Mutations have been classified into those that occur in the binding site itself, those that occur in residues interacting with the binding site and those that occur in outer zones. Structural models of the wild type and mutant forms of the target proteins have been analysed to seek explanations for reduction in drug binding. Stability analysis of an entire array of 19 mutations at each of the residues for each target has been computed using structural models. Conservation indices of individual residues, binding sites and whole proteins are computed based on sequence conservation analysis of the target proteins. The analyses lead to insights about which positions in the polypeptide chain have a higher propensity to acquire drug resistant mutations. Thus critical insights can be obtained about the effect of mutations on drug binding, in terms of which amino acid positions and therefore which interactions should not be heavily relied upon, which in turn can be translated into guidelines for modifying the existing drugs as well as for designing new drugs. The methodology can serve as a general framework to study drug resistant mutants in other micro-organisms as well.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Genetic Algorithm for Rule-set Prediction (GARP) and Support Vector Machine (SVM) with free and open source software (FOSS) - Open Modeller were used to model the probable landslide occurrence points. Environmental layers such as aspect, digital elevation, flow accumulation, flow direction, slope, land cover, compound topographic index and precipitation have been used in modeling. Simulated output of these techniques is validated with the actual landslide occurrence points, which showed 92% (GARP) and 96% (SVM) accuracy considering precipitation in the wettest month and 91% and 94% accuracy considering precipitation in the wettest quarter of the year.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Artificial Neural Networks (ANNs) have been found to be a robust tool to model many non-linear hydrological processes. The present study aims at evaluating the performance of ANN in simulating and predicting ground water levels in the uplands of a tropical coastal riparian wetland. The study involves comparison of two network architectures, Feed Forward Neural Network (FFNN) and Recurrent Neural Network (RNN) trained under five algorithms namely Levenberg Marquardt algorithm, Resilient Back propagation algorithm, BFGS Quasi Newton algorithm, Scaled Conjugate Gradient algorithm, and Fletcher Reeves Conjugate Gradient algorithm by simulating the water levels in a well in the study area. The study is analyzed in two cases-one with four inputs to the networks and two with eight inputs to the networks. The two networks-five algorithms in both the cases are compared to determine the best performing combination that could simulate and predict the process satisfactorily. Ad Hoc (Trial and Error) method is followed in optimizing network structure in all cases. On the whole, it is noticed from the results that the Artificial Neural Networks have simulated and predicted the water levels in the well with fair accuracy. This is evident from low values of Normalized Root Mean Square Error and Relative Root Mean Square Error and high values of Nash-Sutcliffe Efficiency Index and Correlation Coefficient (which are taken as the performance measures to calibrate the networks) calculated after the analysis. On comparison of ground water levels predicted with those at the observation well, FFNN trained with Fletcher Reeves Conjugate Gradient algorithm taken four inputs has outperformed all other combinations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Entropy is a fundamental thermodynamic property that has attracted a wide attention across domains, including chemistry. Inference of entropy of chemical compounds using various approaches has been a widely studied topic. However, many aspects of entropy in chemical compounds remain unexplained. In the present work, we propose two new information-theoretical molecular descriptors for the prediction of gas phase thermal entropy of organic compounds. The descriptors reflect the bulk and size of the compounds as well as the gross topological symmetry in their structures, all of which are believed to determine entropy. A high correlation () between the entropy values and our information-theoretical indices have been found and the predicted entropy values, obtained from the corresponding statistically significant regression model, have been found to be within acceptable approximation. We provide additional mathematical result in the form of a theorem and proof that might further help in assessing changes in gas phase thermal entropy values with the changes in molecular structures. The proposed information-theoretical molecular descriptors, regression model and the mathematical result are expected to augment predictions of gas phase thermal entropy for a large number of chemical compounds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An attempt to study the fluid dynamic behavior of two phase flow comprising of solid and liquid with nearly equal density in a geometrical case that has an industrial significance in theareas like processing of polymers, food, pharma ceutical, paints. In this work,crystalline silica is considered as the dispersed medium in glycerin. In the CFD analysis carried out,the two phase components are considered to be premixed homogeneously at the initial state. The flow in a cylinder that has an axially driven bi-lobe rotor, a typical blender used in polymer industry for mixing or kneading to render the multi-component mixture to homogeneous condition is considered. A viscous, incompressible, isothermal flow is considered with an assumption that the components do not undergo any physical change and the solids are rigid and mix in fully wetting conditions. Silica with a particle diameter of 0.4 mm is considered and flow is analyzed for different mixing fractions. An industry standard CFD code is used for solving 3D-RANS equations. As the outcome of the study the torque demand by the bi-lobe rotor for different mixture fractions which are estimated show a behavioral consistency to the expected physical phenomena occurring in the domain considered.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present work deals with the prediction of stiffness of an Indian nanoclay-reinforced polypropylene composite (that can be termed as a nanocomposite) using a Monte Carlo finite element analysis (FEA) technique. Nanocomposite samples are at first prepared in the laboratory using a torque rheometer for achieving desirable dispersion of nanoclay during master batch preparation followed up with extrusion for the fabrication of tensile test dog-bone specimens. It has been observed through SEM (scanning electron microscopy) images of the prepared nanocomposite containing a given percentage (3–9% by weight) of the considered nanoclay that nanoclay platelets tend to remain in clusters. By ascertaining the average size of these nanoclay clusters from the images mentioned, a planar finite element model is created in which nanoclay groups and polymer matrix are modeled as separate entities assuming a given homogeneous distribution of the nanoclay clusters. Using a Monte Carlo simulation procedure, the distribution of nanoclay is varied randomly in an automated manner in a commercial FEA code, and virtual tensile tests are performed for computing the linear stiffness for each case. Values of computed stiffness modulus of highest frequency for nanocomposites with different nanoclay contents correspond well with the experimentally obtained measures of stiffness establishing the effectiveness of the present approach for further applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present paper details the prediction of blast induced ground vibration, using artificial neural network. The data was generated from five different coal mines. Twenty one different parameters involving rock mass parameters, explosive parameters and blast design parameters, were used to develop the one comprehensive ANN model for five different coal bearing formations. A total of 131 datasets was used to develop the ANN model and 44 datasets was used to test the model. The developed ANN model was compared with the USBM model. The prediction capability to predict blast induced ground vibration, of the comprehensive ANN model was found to be superior.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Microorganisms exhibit varied regulatory strategies such as direct regulation, symmetric anticipatory regulation, asymmetric anticipatory regulation, etc. Current mathematical modeling frameworks for the growth of microorganisms either do not incorporate regulation or assume that the microorganisms utilize the direct regulation strategy. In the present study, we extend the cybernetic modeling framework to account for asymmetric anticipatory regulation strategy. The extended model accurately captures various experimental observations. We use the developed model to explore the fitness advantage provided by the asymmetric anticipatory regulation strategy and observe that the optimal extent of asymmetric regulation depends on the selective pressure that the microorganisms experience. We also explore the importance of timing the response in anticipatory regulation and find that there is an optimal time, dependent on the extent of asymmetric regulation, at which microorganisms should respond anticipatorily to maximize their fitness. We then discuss the advantages offered by the cybernetic modeling framework over other modeling frameworks in modeling the asymmetric anticipatory regulation strategy. (C) 2013 Published by Elsevier Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the preponderance of multidomain proteins in eukaryotic genomes, it is essential to recognize the constituent domains and their functions. Often function involves communications across the domain interfaces, and the knowledge of the interacting sites is essential to our understanding of the structure-function relationship. Using evolutionary information extracted from homologous domains in at least two diverse domain architectures (single and multidomain), we predict the interface residues corresponding to domains from the two-domain proteins. We also use information from the three-dimensional structures of individual domains of two-domain proteins to train naive Bayes classifier model to predict the interfacial residues. Our predictions are highly accurate (approximate to 85%) and specific (approximate to 95%) to the domain-domain interfaces. This method is specific to multidomain proteins which contain domains in at least more than one protein architectural context. Using predicted residues to constrain domain-domain interaction, rigid-body docking was able to provide us with accurate full-length protein structures with correct orientation of domains. We believe that these results can be of considerable interest toward rational protein and interaction design, apart from providing us with valuable information on the nature of interactions. Proteins 2014; 82:1219-1234. (c) 2013 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Land surface temperature (LST) is an important variable in climate, hydrologic, ecological, biophysical and biochemical studies (Mildrexler et al., 2011). The most effective way to obtain LST measurements is through satellites. Presently, LST from moderate resolution imaging spectroradiometer (MODIS) sensor is applied in various fields due to its high spatial and temporal availability over the globe, but quite difficult to provide observations in cloudy conditions. This study evolves of prediction of LST under clear and cloudy conditions using microwave vegetation indices (MVIs), elevation, latitude, longitude and Julian day as inputs employing an artificial neural network (ANN) model. MVIs can be obtained even under cloudy condition, since microwave radiation has an ability to penetrate through clouds. In this study LST and MVIs data of the year 2010 for the Cauvery basin on a daily basis were obtained from MODIS and advanced microwave scanning radiometer (AMSR-E) sensors of aqua satellite respectively. Separate ANN models were trained and tested for the grid cells for which both LST and MVI were available. The performance of the models was evaluated based on standard evaluation measures. The best performing model was used to predict LST where MVIs were available. Results revealed that predictions of LST using ANN are in good agreement with the observed values. The ANN approach presented in this study promises to be useful for predicting LST using satellite observations even in cloudy conditions. (C) 2015 The Authors. Published by Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Prediction of queue waiting times of jobs submitted to production parallel batch systems is important to provide overall estimates to users and can also help meta-schedulers make scheduling decisions. In this work, we have developed a framework for predicting ranges of queue waiting times for jobs by employing multi-class classification of similar jobs in history. Our hierarchical prediction strategy first predicts the point wait time of a job using dynamic k-Nearest Neighbor (kNN) method. It then performs a multi-class classification using Support Vector Machines (SVMs) among all the classes of the jobs. The probabilities given by the SVM for the class predicted using k-NN and its neighboring classes are used to provide a set of ranges of predicted wait times with probabilities. We have used these predictions and probabilities in a meta-scheduling strategy that distributes jobs to different queues/sites in a multi-queue/grid environment for minimizing wait times of the jobs. Experiments with different production supercomputer job traces show that our prediction strategies can give correct predictions for about 77-87% of the jobs, and also result in about 12% improved accuracy when compared to the next best existing method. Experiments with our meta-scheduling strategy using different production and synthetic job traces for various system sizes, partitioning schemes and different workloads, show that the meta-scheduling strategy gives much improved performance when compared to existing scheduling policies by reducing the overall average queue waiting times of the jobs by about 47%.