204 resultados para Polynomial Pencil
Resumo:
The objective is to present the formulation of numerically integrated modified virtual crack closure integral technique for concentrically and eccentrically stiffened panels for computation of strain-energy release rate and stress intensity factor based on linear elastic fracture mechanics principles. Fracture analysis of cracked stiffened panels under combined tensile, bending, and shear loads has been conducted by employing the stiffened plate/shell finite element model, MQL9S2. This model can be used to analyze plates with arbitrarily located concentric/eccentric stiffeners, without increasing the total number of degrees of freedom, of the plate element. Parametric studies on fracture analysis of stiffened plates under combined tensile and moment loads have been conducted. Based on the results of parametric,studies, polynomial curve fitting has been carried out to get best-fit equations corresponding to each of the stiffener positions. These equations can be used for computation of stress intensity factor for cracked stiffened plates subjected to tensile and moment loads for a given plate size, stiffener configuration, and stiffener position without conducting finite element analysis.
Resumo:
The possibility of applying two approximate methods for determining the salient features of response of undamped non-linear spring mass systems subjected to a step input, is examined. The results obtained on the basis of these approximate methods are compared with the exact results that are available for some particular types of spring characteristics. The extension of the approximate methods for non-linear systems with general polynomial restoring force characteristics is indicated.
Resumo:
This paper deals with the approximate solutions of non-linear autonomous systems by the application of ultraspherical polynomials. From the differential equations for amplitude and phase, set up by the method of variation of parameters, the approximate solutions are obtained by a generalized averaging technique based on the ultraspherical polynomial expansions. The method is illustrated with examples and the results are compared with the digital and analog computer solutions. There is a close agreement between the analytical and exact results.
Resumo:
The paper deals with a linearization technique in non-linear oscillations for systems which are governed by second-order non-linear ordinary differential equations. The method is based on approximation of the non-linear function by a linear function such that the error is least in the weighted mean square sense. The method has been applied to cubic, sine, hyperbolic sine, and odd polynomial types of non-linearities and the results obtained are more accurate than those given by existing linearization methods.
An approximate analysis of non-linear non-conservative systems subjected to step function excitation
Resumo:
This paper deals with the approximate analysis of the step response of non-linear nonconservative systems by the application of ultraspherical polynomials. From the differential equations for amplitude and phase, set up by the method of variation of parameters, the approximate solutions are obtained by a generalized averaging technique based on ultraspherical polynomial expansions. The Krylov-Bogoliubov results are given by a particular set of these polynomials. The method has been applied to study the step response of a cubic spring mass system in presence of viscous, material, quadratic, and mixed types of damping. The approximate results are compared with the digital and analogue computer solutions and a close agreement has been found between the analytical and the exact results.
Resumo:
The force constants of H2 and Li2 are evaluated employing their extended Hartree-Fock wavefunctions by a polynomial fit of their force curves. It is suggested that, based on incomplete multiconfiguration Hartree-Fock wavefunctions, force constants calculated from the energy derivatives are numerically more accurate than those obtained from the derivatives of the Hellmann-Feynman forces. It is observed that electrons relax during the nuclear vibrations in such a fashion as to facilitate the nuclear motions.
Resumo:
The growth rates of the hydrodynamic modes in the homogeneous sheared state of a granular material are determined by solving the Boltzmann equation. The steady velocity distribution is considered to be the product of the Maxwell Boltzmann distribution and a Hermite polynomial expansion in the velocity components; this form is inserted into them Boltzmann equation and solved to obtain the coeificients of the terms in the expansion. The solution is obtained using an expansion in the parameter epsilon =(1 - e)(1/2), and terms correct to epsilon(4) are retained to obtain an approximate solution; the error due to the neglect of higher terms is estimated at about 5% for e = 0.7. A small perturbation is placed on the distribution function in the form of a Hermite polynomial expansion for the velocity variations and a Fourier expansion in the spatial coordinates: this is inserted into the Boltzmann equation and the growth rate of the Fourier modes is determined. It is found that in the hydrodynamic limit, the growth rates of the hydrodynamic modes in the flow direction have unusual characteristics. The growth rate of the momentum diffusion mode is positive, indicating that density variations are unstable in the limit k--> 0, and the growth rate increases proportional to kslash} k kslash}(2/3) in the limit k --> 0 (in contrast to the k(2) increase in elastic systems), where k is the wave vector in the flow direction. The real and imaginary parts of the growth rate corresponding to the propagating also increase proportional to kslash k kslash(2/3) (in contrast to the k(2) and k increase in elastic systems). The energy mode is damped due to inelastic collisions between particles. The scaling of the growth rates of the hydrodynamic modes with the wave vector I in the gradient direction is similar to that in elastic systems. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
Tanner Graph representation of linear block codes is widely used by iterative decoding algorithms for recovering data transmitted across a noisy communication channel from errors and erasures introduced by the channel. The stopping distance of a Tanner graph T for a binary linear block code C determines the number of erasures correctable using iterative decoding on the Tanner graph T when data is transmitted across a binary erasure channel using the code C. We show that the problem of finding the stopping distance of a Tanner graph is hard to approximate within any positive constant approximation ratio in polynomial time unless P = NP. It is also shown as a consequence that there can be no approximation algorithm for the problem achieving an approximation ratio of 2(log n)(1-epsilon) for any epsilon > 0 unless NP subset of DTIME(n(poly(log n))).
Resumo:
The physical design of a VLSI circuit involves circuit partitioning as a subtask. Typically, it is necessary to partition a large electrical circuit into several smaller circuits such that the total cross-wiring is minimized. This problem is a variant of the more general graph partitioning problem, and it is known that there does not exist a polynomial time algorithm to obtain an optimal partition. The heuristic procedure proposed by Kernighan and Lin1,2 requires O(n2 log2n) time to obtain a near-optimal two-way partition of a circuit with n modules. In the VLSI context, due to the large problem size involved, this computational requirement is unacceptably high. This paper is concerned with the hardware acceleration of the Kernighan-Lin procedure on an SIMD architecture. The proposed parallel partitioning algorithm requires O(n) processors, and has a time complexity of O(n log2n). In the proposed scheme, the reduced array architecture is employed with due considerations towards cost effectiveness and VLSI realizability of the architecture.The authors are not aware of any earlier attempts to parallelize a circuit partitioning algorithm in general or the Kernighan-Lin algorithm in particular. The use of the reduced array architecture is novel and opens up the possibilities of using this computing structure for several other applications in electronic design automation.
Resumo:
The max-coloring problem is to compute a legal coloring of the vertices of a graph G = (V, E) with a non-negative weight function w on V such that Sigma(k)(i=1) max(v epsilon Ci) w(v(i)) is minimized, where C-1, ... , C-k are the various color classes. Max-coloring general graphs is as hard as the classical vertex coloring problem, a special case where vertices have unit weight. In fact, in some cases it can even be harder: for example, no polynomial time algorithm is known for max-coloring trees. In this paper we consider the problem of max-coloring paths and its generalization, max-coloring abroad class of trees and show it can be solved in time O(vertical bar V vertical bar+time for sorting the vertex weights). When vertex weights belong to R, we show a matching lower bound of Omega(vertical bar V vertical bar log vertical bar V vertical bar) in the algebraic computation tree model.
Resumo:
The problem of denoising damage indicator signals for improved operational health monitoring of systems is addressed by applying soft computing methods to design filters. Since measured data in operational settings is contaminated with noise and outliers, pattern recognition algorithms for fault detection and isolation can give false alarms. A direct approach to improving the fault detection and isolation is to remove noise and outliers from time series of measured data or damage indicators before performing fault detection and isolation. Many popular signal-processing approaches do not work well with damage indicator signals, which can contain sudden changes due to abrupt faults and non-Gaussian outliers. Signal-processing algorithms based on radial basis function (RBF) neural network and weighted recursive median (WRM) filters are explored for denoising simulated time series. The RBF neural network filter is developed using a K-means clustering algorithm and is much less computationally expensive to develop than feedforward neural networks trained using backpropagation. The nonlinear multimodal integer-programming problem of selecting optimal integer weights of the WRM filter is solved using genetic algorithm. Numerical results are obtained for helicopter rotor structural damage indicators based on simulated frequencies. Test signals consider low order polynomial growth of damage indicators with time to simulate gradual or incipient faults and step changes in the signal to simulate abrupt faults. Noise and outliers are added to the test signals. The WRM and RBF filters result in a noise reduction of 54 - 71 and 59 - 73% for the test signals considered in this study, respectively. Their performance is much better than the moving average FIR filter, which causes significant feature distortion and has poor outlier removal capabilities and shows the potential of soft computing methods for specific signal-processing applications.
Resumo:
The k-colouring problem is to colour a given k-colourable graph with k colours. This problem is known to be NP-hard even for fixed k greater than or equal to 3. The best known polynomial time approximation algorithms require n(delta) (for a positive constant delta depending on k) colours to colour an arbitrary k-colourable n-vertex graph. The situation is entirely different if we look at the average performance of an algorithm rather than its worst-case performance. It is well known that a k-colourable graph drawn from certain classes of distributions can be ii-coloured almost surely in polynomial time. In this paper, we present further results in this direction. We consider k-colourable graphs drawn from the random model in which each allowed edge is chosen independently with probability p(n) after initially partitioning the vertex set into ii colour classes. We present polynomial time algorithms of two different types. The first type of algorithm always runs in polynomial time and succeeds almost surely. Algorithms of this type have been proposed before, but our algorithms have provably exponentially small failure probabilities. The second type of algorithm always succeeds and has polynomial running time on average. Such algorithms are more useful and more difficult to obtain than the first type of algorithms. Our algorithms work as long as p(n) greater than or equal to n(-1+is an element of) where is an element of is a constant greater than 1/4.
Resumo:
The problem of denoising damage indicator signals for improved operational health monitoring of systems is addressed by applying soft computing methods to design filters. Since measured data in operational settings is contaminated with noise and outliers, pattern recognition algorithms for fault detection and isolation can give false alarms. A direct approach to improving the fault detection and isolation is to remove noise and outliers from time series of measured data or damage indicators before performing fault detection and isolation. Many popular signal-processing approaches do not work well with damage indicator signals, which can contain sudden changes due to abrupt faults and non-Gaussian outliers. Signal-processing algorithms based on radial basis function (RBF) neural network and weighted recursive median (WRM) filters are explored for denoising simulated time series. The RBF neural network filter is developed using a K-means clustering algorithm and is much less computationally expensive to develop than feedforward neural networks trained using backpropagation. The nonlinear multimodal integer-programming problem of selecting optimal integer weights of the WRM filter is solved using genetic algorithm. Numerical results are obtained for helicopter rotor structural damage indicators based on simulated frequencies. Test signals consider low order polynomial growth of damage indicators with time to simulate gradual or incipient faults and step changes in the signal to simulate abrupt faults. Noise and outliers are added to the test signals. The WRM and RBF filters result in a noise reduction of 54 - 71 and 59 - 73% for the test signals considered in this study, respectively. Their performance is much better than the moving average FIR filter, which causes significant feature distortion and has poor outlier removal capabilities and shows the potential of soft computing methods for specific signal-processing applications. (C) 2005 Elsevier B. V. All rights reserved.
Resumo:
Artificial neural networks (ANNs) have shown great promise in modeling circuit parameters for computer aided design applications. Leakage currents, which depend on process parameters, supply voltage and temperature can be modeled accurately with ANNs. However, the complex nature of the ANN model, with the standard sigmoidal activation functions, does not allow analytical expressions for its mean and variance. We propose the use of a new activation function that allows us to derive an analytical expression for the mean and a semi-analytical expression for the variance of the ANN-based leakage model. To the best of our knowledge this is the first result in this direction. Our neural network model also includes the voltage and temperature as input parameters, thereby enabling voltage and temperature aware statistical leakage analysis (SLA). All existing SLA frameworks are closely tied to the exponential polynomial leakage model and hence fail to work with sophisticated ANN models. In this paper, we also set up an SLA framework that can efficiently work with these ANN models. Results show that the cumulative distribution function of leakage current of ISCAS'85 circuits can be predicted accurately with the error in mean and standard deviation, compared to Monte Carlo-based simulations, being less than 1% and 2% respectively across a range of voltage and temperature values.
Resumo:
A k-dimensional box is the Cartesian product R-1 X R-2 X ... X R-k where each R-i is a closed interval on the real line. The boxicity of a graph G, denoted as box(G), is the minimum integer k such that G can be represented as the intersection graph of a collection of k-dimensional boxes. A unit cube in k-dimensional space or a k-cube is defined as the Cartesian product R-1 X R-2 X ... X R-k where each R-i is a closed interval oil the real line of the form a(i), a(i) + 1]. The cubicity of G, denoted as cub(G), is the minimum integer k such that G can be represented as the intersection graph of a collection of k-cubes. The threshold dimension of a graph G(V, E) is the smallest integer k such that E can be covered by k threshold spanning subgraphs of G. In this paper we will show that there exists no polynomial-time algorithm for approximating the threshold dimension of a graph on n vertices with a factor of O(n(0.5-epsilon)) for any epsilon > 0 unless NP = ZPP. From this result we will show that there exists no polynomial-time algorithm for approximating the boxicity and the cubicity of a graph on n vertices with factor O(n(0.5-epsilon)) for any epsilon > 0 unless NP = ZPP. In fact all these hardness results hold even for a highly structured class of graphs, namely the split graphs. We will also show that it is NP-complete to determine whether a given split graph has boxicity at most 3. (C) 2010 Elsevier B.V. All rights reserved.