478 resultados para Poiseuille Flow


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Self-contained Non-Equilibrium Molecular Dynamics (NEMD) simulations using Lennard-Jones potentials were performed to identify the origin and mechanisms of atomic scale interfacial behavior between sliding metals. The mixing sequence and velocity profiles were compared via MD simulations for three cases, viz.: sell-mated, similar and hard-softvcrystal pairs. The results showed shear instability, atomic scale mixing, and generation of eddies at the sliding interface. Vorticity at the interface suggests that atomic flow during sliding is similar to fluid flow under Kelvin-Helmholtz instability and this is supported by velocity profiles from the simulations. The initial step-function velocity profile spreads during sliding. However the velocity profile does not change much at later stages of the simulation and it eventually stops spreading. The steady state friction coefficient during simulation was monitored as a function of sliding velocity. Frictional behavior can be explained on the basis of plastic deformation and adiabatic effects. The mixing layer growth kinetics was also investigated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Data-flow analysis is an integral part of any aggressive optimizing compiler. We propose a framework for improving the precision of data-flow analysis in the presence of complex control-flow. W initially perform data-flow analysis to determine those control-flow merges which cause the loss in data-flow analysis precision. The control-flow graph of the program is then restructured such that performing data-flow analysis on the resulting restructured graph gives more precise results. The proposed framework is both simple, involving the familiar notion of product automata, and also general, since it is applicable to any forward data-flow analysis. Apart from proving that our restructuring process is correct, we also show that restructuring is effective in that it necessarily leads to more optimization opportunities. Furthermore, the framework handles the trade-off between the increase in data-flow precision and the code size increase inherent in the restructuring. We show that determining an optimal restructuring is NP-hard, and propose and evaluate a greedy strategy. The framework has been implemented in the Scale research compiler, and instantiated for the specific problem of Constant Propagation. On the SPECINT 2000 benchmark suite we observe an average speedup of 4% in the running times over Wegman-Zadeck conditional constant propagation algorithm and 2% over a purely path profile guided approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Closed-form solutions are presented for blood flow in the microcirculation by taking into account the influence of slip velocity at the membrane surface. In this study, the convective inertia force is neglected in comparison with that of blood viscosity on the basis of the smallness of the Reynolds number of the flow in microcirculation. The permeability property of the blood vessel is based on the well known Starling's hypothesis [11]. The effects of slip coefficient on the velocity and pressure fields are clearly depicted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A numerical analysis of the gas dynamic structure of a two-dimensional laminar boundary layer diffusion flame over a porous flat plate in a confined flow is made on the basis of the familiar boundary layer and flame sheet approximations neglecting buoyancy effects. The governing equations of aerothermochemistry with the appropriate boundary conditions are solved using the Patankar-Spalding method. The analysis predicts the flame shape, profiles of temperature, concentrations of variousspecies, and the density of the mixture across the boundary layer. In addition, it also predicts the pressure gradient in the flow direction arising from the confinement ofthe flow and the consequent velocity overshoot near the flame surface. The results of thecomputation performed for an n-pentane-air system are compared with experimental data andthe agreement is found to be satisfactory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract is not available.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The unsteady laminar compressible three-dimensional stagnation-point boundary-layer flow with variable properties has been studied when the velocity of the incident stream, mass transfer and wall temperature vary arbitrarily with time. The second-order unsteady boundary-layer equations for all the effects have been derived by using the method of matched asymptotic expansions. Both nodal and saddle point flows as well as cold and hot wall cases have been considered. The partial differential equations governing the flow have been solved numerically using an implicit finite-difference scheme. Computations have been carried out for an accelerating stream, a decelerating stream and a fluctuating stream. The results indicate that the unsteady free stream velocity distributions, the nature of the stagnation point, the mass transfer, the wall temperature and the variation of the density-viscosity product across the boundary significantly affect the skin friction and heat transfer. The variation of the wall temperature with time strongly affects the heat transfer whereas its effect is comparatively less on skin friction. Suction increases the skin friction and heat transfer but injection does the opposite. The skin friction in the x direction due to the combined effects of first- and second-order boundary layers is less than the skin-friction in the x direction due to the first-order boundary layers for all the parameters. The overall skin friction in the z direction and heat transfer are more or less than the first-order boundary layers depending upon the values of the various parameters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new four-hole cylindrical cantilever probe is described which could be used for three-dimensional flow surveys. The probe is more compact than the usual cylindrical type allowing for closer approach to a boundary. The probe is robust and gives good reproducibility. It can be used for a wide range of pitch angle. Review of Scientific Instruments is copyrighted by The American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An oscillatory flow of a viscous incompressible fluid in an elastic tube of variable cross section has been investigated at low Reynolds number. The equations governing, the flow are derived under the assumption that the variation of the cross-section is slow in the axial direction for a tethered tube. The problem is then reduced to that of solving for the excess pressure from a second order ordinary differential equation with complex valued Bessel functions as the coefficients. This equation has been solved numerically for geometries of physiological interest and a comparison is made with some of the known theoretical and experimental results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous work on rigid splitter plates in the wake of a bluff body has shown that the primary vortex shedding can be suppressed for sufficiently long splitter plates. In the present work, we study the problem of a hinged-splitter plate in the wake of a circular cylinder. The splitter plate can rotate about the hinge at the base of the cylinder due to the unsteady fluid forces acting on it, and hence the communication between the two sides of the wake is not totally disrupted as in the rigid splitter plate case. In our study, we investigate this problem in the limit where the stiffness and internal damping associated with the hinge are negligible, and the mass ratio of the splitter plate is small. The experiments show that the splitter plate oscillations increase with Reynolds numbers at low values of Re, and are found to reach a saturation amplitude level at higher Re, Re>4000. This type of saturation amplitude level that appears to continue indefinitely with Re, appears to be related to the fact that there is no structural restoring force, and has been observed previously for transversely oscillating cylinders with no restorin force. In the present case, the saturation tip amplitude level can be tip to 0.45D, where D is the cylinder diameter. For this hinged-rigid splitter plate case, it is found that the splitter plate length to cylinder diameter ratio (L/D) is crucial in determining the character and magnitude of the oscillations. For small splitter plate length (L/D <= 3.0), the oscillations appear to be nearly periodic with tip amplitudes of about 0.45D nearly independent of L/D. The nondiinensional oscillation frequencies (fD/U) on the other hand are found to continuously vary with L/D from fD/U approximate to 0.2 at L/D = 1 to fD/U approximate to 0.1 at L/D = 3. As the splitter plate length is further increased beyond L/D >= 4.0, the character of the splitter plate oscillations suddenly changes. The oscillations become aperiodic with much smaller amplitudes. In this long splitter plate regime, the spectra of the oscillations become broadband, and are reminiscent of the change in character of the wake oscillations seen in the earlier fixed-rigid splitter plate case for L/D >= 5.0. In the present case of the hinged-splitter plate, the sudden transition seen as the splitter plate length (L/D) is increased from 3 to 4 may be attributed to the fact that the wake vortices are no longer able to synchronize with the plate motions for larger splitter plate lengths. Hence, as observed in other vortex-induced vibration problems, the oscillations becomeaperiodic and the amplitude reduces dramatically.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The impression creep behaviour of zinc is studied in the range 300 to 500 K and the results are compared with the data from conventional creep tests. The steady-state impression velocity is found to exhibit the same stress and temperature dependence as in conventional tensile creep with the same power law stress exponent. Also studied is the effect of indenter size on the impression velocity. The thermal activation parameters for plastic flow at high temperatures derived from a number of testing techniques agree reasonably well. Grain boundary sliding is shown to be unimportant in controlling the rate of plastic flow at high temperatures. It is observed that the Cottrell-Stokes law is obeyed during high-temperature deformation of zinc. It is concluded that a mechanism such as forest intersection involving attractive trees controls the high-temperature flow rather than a diffusion mechanism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The steady flow of an incompressible, viscous, electrically conducting fluid between two parallel, infinite, insulated disks rotating with different angular velocities about two noncoincident axes has been investigated; under the application of a uniform magnetic field in the axial direction. The solutions for the symmetric and asymmetric velocities are presented. The interesting feature arising due to the magnetic field is that in the central region the flow attains a uniform rotation with mean angular velocity at all rotation speeds for sufficiently large Hartmann number. In this case the flow adjusts to the rotational velocities of the disks mainly in the boundary layers near the disks. The forces on the disks are found to increase due to the presence of the applied magnetic field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present paper an exact similar solution of the Navier-Stokes equation for unsteady flow of a dilute suspension in a semi-infinite contracting or expanding circular pipe is presented. The effects of the Schmidt number (Sc), Reynolds number (|ε|), the volume fraction (α) and the relaxation time (τ) of the particulate phase on the flow characteristics are examined. The presence of the solid particles has been observed to influence the flow behaviour significantly. These solutions are valid down to the state of a completely collapsed pipe, since the nonlinearity is retained fully. The results may help understanding the flow near the heart and certain forced contractions or expansions of valved veins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oscillatory flow in a tube of slowly varying cross section is investigated in the presence of a uniform magnetic field in the axial direction. A perturbation solution including steady streaming is presented. The pressure and shear stress on the wall for various parameters governing the flow are discussed. Physics of Fluids is copyrighted by The American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple mathematical model depicting blood flow in the capillary is developed with an emphasis on the permeability property of the blood vessel based on Starling's hypothesis. In this study the effect of inertia has been neglected in comparison with the viscosity on the basis of the smallness of the Reynolds number of the flow in the capillary. The capillary blood vessel is approximated by a circular cylindrical tube with a permeable wall. The blood is represented by a couple stress fluid. With such an ideal model the velocity and pressure fields are determined. It is shown that an increase in the couple stress parameter increases the resistance to the flow and thereby decreases the volume rate flow. A comparison of the results with those of the Newtonian case has also been made.