171 resultados para Piezoelectric coefficient


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A circular array of Piezoelectric Wafer Active Sensor (PWAS) has been employed to detect surface damages like corrosion using lamb waves. The array consists of a number of small PWASs of 10 mm diameter and 1 mm thickness. The advantage of a circular array is its compact arrangement and large area of coverage for monitoring with small area of physical access. Growth of corrosion is monitored in a laboratory-scale set-up using the PWAS array and the nature of reflected and transmitted Lamb wave patterns due to corrosion is investigated. The wavelet time-frequency maps of the sensor signals are employed and a damage index is plotted against the damage parameters and varying frequency of the actuation signal (a windowed sine signal). The variation of wavelet coefficient for different growth of corrosion is studied. Wavelet coefficient as function of time gives an insight into the effect of corrosion in time-frequency scale. We present here a method to eliminate the time scale effect which helps in identifying easily the signature of damage in the measured signals. The proposed method becomes useful in determining the approximate location of the corrosion with respect to the location of three neighboring sensors in the circular array. A cumulative damage index is computed for varying damage sizes and the results appear promising.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An analysis of the pressure variation over an aerofoil with integrated Shape Memory Alloy (SMA) wire is reported. A computational model based on finite elements and potential flow computation is proposed to obtain the deflections of the upper and the lower skins of the aerofoil subjected to aerodynamic pressure and hysteretic deformation of the SMA wire. The computational model couples a one-dimensional phenomenological constitutive model of SMA wire with the laminar incompressible aerodynamic pressure induced deformation of the aerofoil skins. The SMA wires are actuated by thermoelectric control system with auxiliary compensator feeding the piezoelectric stack actuators to adjust the hysteretic dynamics of the SMA wire. At each step of this coupled deformation process, the deflected/morphed shape of the aerofoil is d while recalculating to get the pressure distribution. Panel method based on incompressible and inviscid flow is employed for this purpose. The aerodynamic lift is then obtained from the pressure distributions. Numerical results on the variation of coefficient of pressure are reported.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract—A method of testing for parametric faults of analog circuits based on a polynomial representaion of fault-free function of the circuit is presented. The response of the circuit under test (CUT) is estimated as a polynomial in the applied input voltage at relevant frequencies apart from DC. Classification of CUT is based on a comparison of the estimated polynomial coefficients with those of the fault free circuit. The method needs very little augmentation of circuit to make it testable as only output parameters are used for classification. This procedure is shown to uncover several parametric faults causing smaller than 5 % deviations the nominal values. Fault diagnosis based upon sensitivity of polynomial coefficients at relevant frequencies is also proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract—DC testing of parametric faults in non-linear analog circuits based on a new transformation, entitled, V-Transform acting on polynomial coefficient expansion of the circuit function is presented. V-Transform serves the dual purpose of monotonizing polynomial coefficients of circuit function expansion and increasing the sensitivity of these coefficients to circuit parameters. The sensitivity of V-Transform Coefficients (VTC) to circuit parameters is up to 3x-5x more than sensitivity of polynomial coefficients. As a case study, we consider a benchmark elliptic filter to validate our method. The technique is shown to uncover hitherto untestable parametric faults whose sizes are smaller than 10 % of the nominal values. I.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we propose a concept and report experimental results based on a circular array of Piezoelectric Wafer Active Sensors (PWASs) for rapid localization and parametric identification of corrosion type damage in metallic plates. Implementation of this circular array of PWASs combines the use of ultrasonic Lamb wave propagation technique and an algorithm based on symmetry breaking in the signal pattern to locate and monitor the growth of a corrosion pit on a metallic plate. Wavelet time-frequency maps of the sensor signals are employed to obtain an insight regarding the effect of corrosion growth on the Lamb wave transmission in time-frequency scale. We present here a method to eliminate the time scale, which helps in identifying easily the signature of damage in the measured signals. The proposed method becomes useful in determining the approximate location of the damage with respect to the location of three neighboring sensors in the circular array. A cumulative damage index is computed from the wavelet coefficients for varying damage sizes and the results appear promising. Damage index is plotted against the damage parameters for frequency sweep of the excitation signal (a windowed sine signal). Results of corrosion damage are compared with circular holes of various sizes to demonstrate the applicability of present method to different types of damage. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Swarm intelligence algorithms are applied for optimal control of flexible smart structures bonded with piezoelectric actuators and sensors. The optimal locations of actuators/sensors and feedback gain are obtained by maximizing the energy dissipated by the feedback control system. We provide a mathematical proof that this system is uncontrollable if the actuators and sensors are placed at the nodal points of the mode shapes. The optimal locations of actuators/sensors and feedback gain represent a constrained non-linear optimization problem. This problem is converted to an unconstrained optimization problem by using penalty functions. Two swarm intelligence algorithms, namely, Artificial bee colony (ABC) and glowworm swarm optimization (GSO) algorithms, are considered to obtain the optimal solution. In earlier published research, a cantilever beam with one and two collocated actuator(s)/sensor(s) was considered and the numerical results were obtained by using genetic algorithm and gradient based optimization methods. We consider the same problem and present the results obtained by using the swarm intelligence algorithms ABC and GSO. An extension of this cantilever beam problem with five collocated actuators/sensors is considered and the numerical results obtained by using the ABC and GSO algorithms are presented. The effect of increasing the number of design variables (locations of actuators and sensors and gain) on the optimization process is investigated. It is shown that the ABC and GSO algorithms are robust and are good choices for the optimization of smart structures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

K0.5La0.5Bi2Nb2O9, a relaxor, was synthesized and the structural studies confirmed it to be an n = 2 member of the Aurivillius oxides. The ½{h00} and ½{hk0} types of superlattice reflections in the electron diffraction patterns reflected the presence of ordered polar regions. A broad dielectric peak with frequency dependent dielectric maximum temperature was observed. The dielectric relaxation obeyed the Vogel-Fulcher relation wherein Ea = 0.04 eV, Tf = 428 K,and ωo = 1010 Hz. The diffuseness parameter γ = 2.003 established the relaxor nature and it was attributed to the A-site cationic disorder. The piezoelectric d31 coefficient was 0.5 pC/N at 300 K and 2 pC/N at 480 K.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pyrochlore phase free [Pb0.94Sr0.06] [(Mn1/3Sb2/3)(0.05)(Zr0.53Ti0.47)(0.95)] O-3 ceramics has been synthesized with pure Perovskite phase by semi-wet route using the columbite precursor method. The field dependences of the dielectric response and the conductivity have been measured in a frequency range from 50 Hz to 1 MHz and in a temperature range from 303 K to 773 K. An analysis of the real and imaginary parts of the dielectric permittivity with frequency has been performed, assuming a distribution of relaxation times. The scaling behavior of the dielectric loss spectra suggests that the distribution of the relaxation times is temperature independent. The SEM photographs of the sintered specimens present the homogenous structures and well-grown grains with a sharp grain boundary. The material exhibits tetragonal structure. When measured at frequency (100 Hz), the polarization shows a strong field dependence. Different piezoelectric figures of merit (k(p), d(33) and Q(m)) of the material have also been measured obtaining their values as 0.53, 271 pC/N and 1115, respectively, which are even higher than those of pure PZT with morphotropic phase boundary (MPB) composition. Thus the present ceramics have the optimal overall performance and are promising candidates for the various high power piezoelectric applications. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we investigate a numerical method for the solution of an inverse problem of recovering lacking data on some part of the boundary of a domain from the Cauchy data on other part for a variable coefficient elliptic Cauchy problem. In the process, the Cauchy problem is transformed into the problem of solving a compact linear operator equation. As a remedy to the ill-posedness of the problem, we use a projection method which allows regularization solely by discretization. The discretization level plays the role of regularization parameter in the case of projection method. The balancing principle is used for the choice of an appropriate discretization level. Several numerical examples show that the method produces a stable good approximate solution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Capillary pumped loop (CPL) and loop heat pipe (LHP) are passive two-phase heat transport devices. They have been gaining importance as a part of the thermal control system of spacecraft. The evaporation heat transfer coefficient at the tooth-wick interface of an LHP or CPL has a significant impact on the evaporator temperature. It is also the main parameter in sizing of a CPL or LHP. Experimentally determined evaporation heat transfer coefficients from a three-port CPL with tubular axially grooved (TAG) evaporator and a TAG LHP with acetone, R-134A, and ammonia as working fluids are presented in this paper. The influences of working fluid, hydrodynamic blocks in the core, evaporator configuration (LHP or CPL), and adverse elevation (evaporator above condenser) on the heat transfer coefficient are presented.