217 resultados para Perturbed Verblunsky coefficients
Resumo:
We propose a robust method for mosaicing of document images using features derived from connected components. Each connected component is described using the Angular Radial Tran. form (ART). To ensure geometric consistency during feature matching, the ART coefficients of a connected component are augmented with those of its two nearest neighbors. The proposed method addresses two critical issues often encountered in correspondence matching: (i) The stability of features and (ii) Robustness against false matches due to the multiple instances of characters in a document image. The use of connected components guarantees a stable localization across images. The augmented features ensure a successful correspondence matching even in the presence of multiple similar regions within the page. We illustrate the effectiveness of the proposed method on camera captured document images exhibiting large variations in viewpoint, illumination and scale.
Resumo:
We consider a Linear system with Markovian switching which is perturbed by Gaussian type noise, If the linear system is mean square stable then we show that under certain conditions the perturbed system is also stable, We also shaw that under certain conditions the linear system with Markovian switching can be stabilized by such noisy perturbation.
Resumo:
Let E be an elliptic curve defined over Q and let K/Q be a finite Galois extension with Galois group G. The equivariant Birch-Swinnerton-Dyer conjecture for h(1)(E x(Q) K)(1) viewed as amotive over Q with coefficients in Q[G] relates the twisted L-values associated with E with the arithmetic invariants of the same. In this paper I prescribe an approach to verify this conjecture for a given data. Using this approach, we verify the conjecture for an elliptic curve of conductor 11 and an S-3-extension of Q.
Resumo:
The unsteady magnetohydrodynamic viscous flow and heat transfer of Newtonian fluids induced by an impulsively stretched plane surface in two lateral directions are studied by using an analytic technique, namely, the homotopy method. The analytic series solution presented here is highly accurate and uniformly valid for all time in the entire region. The effects of the stretching ratio and the magnetic field on the surface shear stresses and heat transfer are studied. The surface shear stresses in x- and y-directions and the surface heat transfer are enchanced by increasing stretching ratio for a fixed value of the magnetic parameter. For a fixed stretching ratio, the surface shear stresses increase with the magnetic parameter, but the heat transfer decreases. The Nusselt number takes longer time to reach the steady state than the skin friction coefficients. There is a smooth transition from the initial unsteady state to the steady state.
Resumo:
A straightforward analysis involving Fourier cosine transforms and the theory of Fourier seies is presented for the approximate calculation of the hydrodynamic pressure exerted on the vertical upstream face of a dam due to constant earthquake ground acceleration. The analysis uses the “Parseval relation” on the Fourier coefficients of square integrable functions, and directly brings out the mathematical nature of the approximate theory involved.
Resumo:
Vibrational stability of large flexible structurally damped spacecraft carrying internal angular momentum and undergoing large rigid body rotations is analysed modeling the systems as elastic continua. Initially, analytical solutions to the motion of rigid gyrostats under torque-free conditions are developed. The solutions to the gyrostats modeled as axisymmetric and triaxial spacecraft carrying three and two constant speed momentum wheels, respectively, with spin axes aligned with body principal axes are shown to be complicated. These represent extensions of solutions for simpler cases existing in the literature. Using these solutions and modal analysis, the vibrational equations are reduced to linear ordinary differential equations. Equations with periodically varying coefficients are analysed applying Floquet theory. Study of a few typical beam- and plate-like spacecraft configurations indicate that the introduction of a single reaction wheel into an axisymmetric satellite does not alter the stability criterion. However, introduction of constant speed rotors deteriorates vibrational stability. Effects of structural damping and vehicle inertia ratio are also studied.
Resumo:
Cast aluminium alloy-mica particle composites were made by dispersing mica particles in a vortex produced by stirring the liquid Al-4 wt% Cu-1.5 wt% Mg alloy and then casting the melt containing the suspended particles into permanent moulds. Spiral fluidity and casting fluidity of the alloy containing mica particles in suspension were determined. Both the spiral fluidity and the casting fluidity of the base alloy were found to decrease with an increase in volume or weight percent of mica particles (of a given size), and with a decrease in particle size (for a given amount of particles). The fluidities of Al-4 wt% Cu-1.5 wt% Mg alloys containing suspended mica particles were found to correlate very well with the surface area of suspended mica particles. The regression equation for spiral fluidity Y (cm) as a function of surface area of mica particles per gram of spiral X (cm2 g–1) at 700° C was found to be Y=42.62–0.42X with a correlation coefficient of 0.9634. The regression equations for casting fluidity Yprime (cm) as a functiono of surface area of mica particles per gram of fluidity test piece Xprime (cm2 g–1) at 710 and 670° C were found to be Yprime=19.71–0.17Xprime and Yprime=13.52–0.105Xprime with correlation coefficients of 0.9194 and 0.9612 respectively. The percentage decrease in casting fluidity of composite melts containing up to 2.5 wt% mica with a drop in temperature is quite similar to the corresponding decrease in the casting fluidity of base alloy melts (without mica). The change in fluidity due to mica dispersions has been discussed in terms of changes in viscosity of the composite melts. However, the fluidities of these composite alloys containing up to 2.5 wt% mica are adequate for making a variety of simple castings including bearings for which these alloys have been developed.
Resumo:
A hybrid simulation technique for identification and steady state optimization of a tubular reactor used in ammonia synthesis is presented. The parameter identification program finds the catalyst activity factor and certain heat transfer coefficients that minimize the sum of squares of deviation from simulated and actual temperature measurements obtained from an operating plant. The optimization program finds the values of three flows to the reactor to maximize the ammonia yield using the estimated parameter values. Powell's direct method of optimization is used in both cases. The results obtained here are compared with the plant data.
Resumo:
The efficiency of dephosphorisation is governed by the thermodynamic behaviour of phosphorus and oxygen in molten metal, and P2O5 and FeO in slag. The equilibrium distribution of phosphorus and oxygen, for a wide range of chemical compositions simulating the evolution of slag composition during a typical BOF blow, has been experimentally determined. A mathematical model for estimation of the activity coefficients, as a function of the chemical composition, was also attempted.
Resumo:
This note is concerned with the problem of determining approximate solutions of Fredholm integral equations of the second kind. Approximating the solution of a given integral equation by means of a polynomial, an over-determined system of linear algebraic equations is obtained involving the unknown coefficients, which is finally solved by using the least-squares method. Several examples are examined in detail. (c) 2009 Elsevier Inc. All rights reserved.
Resumo:
Three new procedures - in the context of estimation of virial coefficients and summation of the partial virial series for hard discs and hard spheres - are proposed. They are based on the parametrised Euler transformation, a novel resummation, identity and the ε-convergence methods respectively. A comparison with other estimates (molecular dynamics, graph theory and empirical methods) reveals satisfactory agreement.
Resumo:
We study the renormalization group flows of the two terminal conductance of a superconducting junction of two Luttinger liquid wires. We compute the power laws associated with the renormalization group flow around the various fixed points of this system using the generators of the SU(4) group to generate the appropriate parametrization of an matrix representing small deviations from a given fixed point matrix [obtained earlier in S. Das, S. Rao, and A. Saha, Phys. Rev. B 77, 155418 (2008)], and we then perform a comprehensive stability analysis. In particular, for the nontrivial fixed point which has intermediate values of transmission, reflection, Andreev reflection, and crossed Andreev reflection, we show that there are eleven independent directions in which the system can be perturbed, which are relevant or irrelevant, and five directions which are marginal. We obtain power laws associated with these relevant and irrelevant perturbations. Unlike the case of the two-wire charge-conserving junction, here we show that there are power laws which are nonlinear functions of V(0) and V(2kF) [where V(k) represents the Fourier transform of the interelectron interaction potential at momentum k]. We also obtain the power law dependence of linear response conductance on voltage bias or temperature around this fixed point.
Resumo:
Experimental results are presented of ionisation (a)a nd electron attachment ( v ) coefficients evaluated from the steady-state Townsend curregnrto wth curves for SFsN2 and CC12FrN2 mixtures over the range 60 S E/P 6 240 (where E is the electric field in V cm" and P is the pressure in Torr reduced to 20'C). In both the mixtures the attachment coefficients (vmu) evaluated were found to follow the relationship; where 7 is the attachment coefficient of pure electronegative gas, F is the fraction of the electronegative gas in the mixture and /3 is a constant. The ionisation coefficients (amlx) generally obeyed the relationship where w2a nd aAa re thei onisation coefficients of nitrogen and the attachinggraess pectively. However, in case of CC12FrN2 mixtures, there were maxima in the a,,,v,a,l ues for CCI2F2 concentrations varying between 10% and 30% at all values of E/P investigated. Effective ionisation coefficients (a - p)/P obtained in these binary mixtures show that the critical E/P (corresponding to (a - q)/P = 0) increases with increase in the concentration of the electronegative gas up to 40%. Further increase in the electronegative gas content does not seem to alter the critical E/P.
Resumo:
In this paper we have used the method of characteristics developed for two dimensional unsteady flow problems to study a simplified axial turbine problem. The system consists of two sets of blades —the guiding vanes which are fixed and the rotor blades which move perpendicular to these vanes. The initial undisturbed constant flow in the system is perturbed by introducing a small velocity normal to the rotor blades to simulate a slight constant inclination. The resulting perturbed flow is periodic after the first three cycles. We have studied the perturbed density distribution throughout the system during a period.
Resumo:
Reflection and transmission coefficients of rubberized coir pads over the frequency band 200 kHz to 4 MHz are presented in this Paper. These results are compared with those reported for neoprene, paraffin wax, rubber car mat and plastic door mat1. The rubberized coir pads were found to possess wideband absorption characteristics. It has been experimentally found that 0.05 m thick coir pads have almost 100% absorption in the frequency range 800 kHz-3 MHz with a maximum at 2.35 MHz. We have used this material for lining the water tank for underwater acoustic studies.