524 resultados para PROTEIN ELECTROCHEMISTRY
Resumo:
Protein Kinase-Like Non-kinases (PKLNKs), which are closely related to protein kinases, lack the crucial catalytic aspartate in the catalytic loop, and hence cannot function as protein kinase, have been analysed. Using various sensitive sequence analysis methods, we have recognized 82 PKLNKs from four higher eukaryotic organisms, namely, Homo sapiens, Mus musculus, Rattus norvegicus, and Drosophila melanogaster. On the basis of their domain combination and function, PKLNKs have been classified mainly into four categories: (1) Ligand binding PKLNKs, (2) PKLNKs with extracellular protein-protein interaction domain, (3) PKLNKs involved in dimerization, and (4) PKLNKs with cytoplasmic protein-protein interaction module. While members of the first two classes of PKLNKs have transmembrane domain tethered to the PKLNK domain, members of the other two classes of PKLNKs are cytoplasmic in nature. The current classification scheme hopes to provide a convenient framework to classify the PKLNKs from other eukaryotes which would be helpful in deciphering their roles in cellular processes.
Resumo:
Underlying the unique structures and diverse functions of proteins area vast range of amino-acid sequences and a highly limited number of folds taken up by the polypeptide backbone. By investigating the role of noncovalent connections at the backbone level and at the detailed side-chain level, we show that these unique structures emerge from interplay between random and selected features. Primarily, the protein structure network formed by these connections shows simple (bond) and higher order (clique) percolation behavior distinctly reminiscent of random network models. However, the clique percolation specific to the side-chain interaction network bears signatures unique to proteins characterized by a larger degree of connectivity than in random networks. These studies reflect some salient features of the manner in which amino acid sequences select the unique structure of proteins from the pool of a limited number of available folds.
Resumo:
The folding and stability of maltose binding protein (MBP) have been investigated as a function of pH and temperature by intrinsic tryptophan fluorescence, far- and near-UV circular dichroism, and high-sensitivity differential scanning calorimetric measurements. MBP is a monomeric, two-domain protein containing 370 amino acids. The protein is stable in the pH range of 4-10.5 at 25 degrees C. The protein exhibits reversible, two-state, thermal and guanidine hydrochloride-mediated denaturation at neutral pH. The thermostability of MBP is maximal at pH 6, with a Tm of 64.9 degrees C and a deltaHm of 259.7 kcal mol(-1). The linear dependence of deltaHm on Tm was used to estimate a value of deltaCp of 7.9 kcal mol(-1) K(-1) or 21.3 cal (mol of residue)(-1) K(-1). These values are higher than the corresponding deltaCp's for most globular proteins studied to date. However, the extrapolated values of deltaH and deltaS (per mole of residue) at 110 degrees C are similar to those of other globular proteins. These data have been used to show that the temperature at which a protein undergoes cold denaturation depends primarily on the deltaCp (per mol of residue) and that this temperature increases with an increase in deltaCp. The predicted decrease in stability of MBP at low temperatures was experimentally confirmed by carrying out denaturant-mediated unfolding studies at neutral pH at 2 and 28 degrees C.
Resumo:
The thermodynamics of tie binding of calcium and magnesium ions to a calcium binding protein from Entamoeba histolytica was investigated by isothermal titration calorimetry (ITC) in 20 mM MOPS buffer (pH 7.0) at 20 degrees C. Enthalpy titration curves of calcium show the presence of four Ca2+ binding sites, There exist two low-affinity sites for Ca2+, both of which are exothermic in nature and with positive cooperative interaction between them. Two other high affinity sites for Ca2+ exist of which one is endothermic and the other exothermic, again with positive cooperative interaction. The binding constants for Ca2+ at the four sites have been verified by a competitive binding assay, where CaBP competes with a chromophoric chelator 5, 5'-Br-2 BAPTA to bind Ca2+ and a Ca2+ titration employing intrinsic tyrosine fluorescence of the protein, The enthalpy of titration of magnesium in the absence of calcium is single site and endothermic in nature. In the case of the titrations performed using protein presaturated with magnesium, the amount of heat produced is altered. Further, the interaction between the high-affinity sites changes to negative cooperativity. No exchange of heat was observed throughout the addition of magnesium in the presence of 1 mM calcium, Titrations performed on a cleaved peptide comprising the N-terminus and the central linker show the existence of two Ca2+ specific sites, These results indicate that this CaBP has one high-affinity Ca-Mg site, one high-affinity Ca-specific site, and two low-affinity Ca-specific sites. The thermodynamic parameters of the binding of these metal ions were used to elucidate the energetics at the individual site(s) and the interactions involved therein at various concentrations of the denaturant, guanidine hydrochloride, ranging from 0.05 to 6.5 M. Unfolding of the protein was also monitored by titration calorimetry as a function of the concentration of the denaturant. These data show that at a GdnHCl concentration of 0.25 M the binding affinity for the Mg2+ ion is lost and there are only two sites which can bind to Ca2+, with substantial loss cooperativity. At concentrations beyond 2.5 M GdnHCl, at which the unfolding of the tertiary structure of this protein is observed by near UV CD spectroscopy, the binding of Ca2+ ions is lost. We thus show that the domain containing the two low-affinity sites is the first to unfold in the presence of GdnHCl. Control experiments with change in ionic strength by addition of KCI in the range 0.25-1 M show the existence of four sites with altered ion binding parameters.
Resumo:
The coat protein gene of physalis mottle tymovirus (PhMV) was over expressed in Escherichia coli using pET-3d vector. The recombinant protein was found to self assemble into capsids in vivo. The purified recombinant capsids had an apparent s value of 56.5 S and a diameter of 29(±2) nm. In order to establish the role of amino and carboxy-terminal regions in capsid assembly, two amino-terminal deletions clones lacking the first 11 and 26 amino acid residues and two carboxy-terminal deletions lacking the last five and ten amino acid residues were constructed and overexpressed. The proteins lacking N-terminal 11 (PhCPN1) and 26 (PhCPN2) amino acid residues self assembled into T = 3 capsids in vivo, as evident from electron microscopy, ultracentrifugation and agarose gel electrophoresis. The recombinant, PhCPN1 and PhCPN2 capsids were as stable as the empty capsids formed in vivo and encapsidated a small amount of mRNA. The monoclonal antibody PA3B2, which recognizes the epitope within region 22 to 36, failed to react with PhCPN2 capsids while it recognized the recombinant and PhCPN1 capsids. Disassembly of the capsids upon treatment with urea showed that PhCPN2 capsids were most stable. These results demonstrate that the N-terminal 26 amino acid residues are not essential for T = 3 capsid assembly in PhMV. In contrast, both the proteins lacking the C-terminal five and ten amino acid residues were present only in the insoluble fraction and could not assemble into capsids, suggesting that these residues are crucial for folding and assembly of the particles.
Resumo:
his study elucidates some structural and biological features of galactose-binding variants of the cytotoxic proteins ricin and abrin. An isolation procedure is reported for ricin variants from Ricinus communis seeds by using lactamyl-Sepharose affinity matrix, similar to that reported previously for variants of abrin from Abrus precatorius seeds [Hegde, R., Maiti, T. K. & Podder, S. K. (1991) Anal. Biochem. 194, 101–109]. Ricin variants, subfractionated on carboxymethyl-Sepharose CL-6B ion-exchange chromatography, were characterized further by SDS/PAGE, IEF and a binding assay. Based on the immunological cross-reactivity of antibody raised against a single variant of each of ricin and abrin, it was established that all the variants of the corresponding type are immunologically indistinguishable. Analysis of protein titration curves on an immobilized pH gradient indicated that variants of abrin I differ from other abrin variants, mainly in their acidic groups and that variance in ricin is a cause of charge substitution. Detection of subunit variants of proteins by two-dimensional gel electrophoresis showed that there are twice as many subunit variants as there are variants of holoproteins, suggesting that each variant has a set of subunit variants, which, although homologous, are not identical to the subunits of any other variant with respect to pI. Seeds obtained from polymorphic species of R. communis showed no difference in the profile of toxin variants, as analyzed by isoelectric focussing. Toxin variants obtained from red and white varieties of A. precatorius, however, showed some difference in the number of variants as well as in their relative intensities. Furthermore, variants analyzed from several single seeds of A. precatorius red type revealed a controlled distribution of lectin variants in three specific groups, indicating an involvement of at least three genes in the production of Abrus lectins. The complete absence or presence of variants in each group suggested a post-translational differential proteolytic processing, a secondary event in the production of abrin variants.
Resumo:
A sensitive dimerization assay for DNA binding proteins has been developed using gene fusion technology. For this purpose, we have engineered a gene fusion using protein A gene of Staphylococcus aureus and C gene, the late gene transactivator of bacteriophage Mu. The C gene was fused to the 3' end of the gene for protein A to generate an A- C fusion. The overexpressed fusion protein was purified in a single step using immunoglobulin affinity chromatography. Purified fusion protein exhibits DNA binding activity as demonstrated by electrophoretic mobility shift assays. When the fusion protein A-C was mixed with C and analyzed for DNA binding, in addition to C and A-C specific complexes, a single intermediate complex comprising of a heterodimer of C and A-C fusion proteins was observed. Further, the protein A moiety in the fusion protein A-C does not contribute to DNA binding as demonstrated by proteolytic cleavage and circular dichroism (CD) analysis. The assay has also been applied to analyze the DNA binding domain of C protein by generating fusions between protein A and N- and C-terminal deletion mutants of C. The results indicate a role for the region towards the carboxy terminal of the protein in DNA binding. The general applicability of this method is discussed.
Prospects of riboflavin carrier protein (RCP) as an antifertility vaccine in male and female mammals
Resumo:
Riboflavin carrier protein (RCP) is obligatorily involved in yolk deposition of the vitamin, riboflavin, in the developing oocyte of the hen. The production of this protein is inducible by oestrogen. It is evolutionarily conserved in terms of its physicochemical, immunological and functional characteristics. It is the prime mediator of vitamin supply to the developing fetus in mammals, including primates. Passive immunoneutralization of the protein terminates pregnancy in rats. Active immunization of rats and bonnet monkeys with avian RCP prevents pregnancy without causing any adverse physiological effects of the mother in terms of her vitamin status, reproductive cycles or reproductive-endocrine profile. Denatured, linearized RCP is more effective in eliciting neutralizing antibodies capable of interfering with embryonic viability either before or during peri-implantation stages. Two defined stretches of sequential epitopes, one located at the N-terminus and the other at the C-terminus of the protein have been identified. Active immunization with either of these epitopes conjugated with diptheria toxoid curtails pregnancy in rats and monkeys. Immunohistochemical localization of RCP on ovulated oocytes and early embryos shows that the antibodies cause degeneration only of early embryos. RCP is produced intra-testicularly and becomes localized on acrosomal surface of mammalian spermatozoa. Active immunization of male rats and monkeys with denatured RCP markedly reduces fertility by impairing the fertilizing potential of spermatozoa. These findings suggest that RCP, or its defined fragments, could be a novel, first generation vaccine for regulating fertility in both the sexes.
Resumo:
An analysis of the recently reported cDNA derived amino acid sequences of mouse (Kleene and Flynn, J. Biol. Chem. , 17272–17277, 1987) and rat (Luersson Image ,Nucl. Acids Res. Image , 3585, 1989). TP2 has revealed the presence of two potential zinc finger motifs involving cysteine and histidine residues. TP2, as purified from rat elongating spermatids, is shown here to contain 0.2 atoms of zinc bound per molecule of the protein by atomic absorption spectroscopy. On incubation with 10 μM ZnCl2, Image , and subsequent exhaustive dialysis, TP2 had 2 atoms of zinc bound per molecule. The involvement of cysteine residues of TP2 in coordination with zinc was also suggested by the observation that TP2 could be labeled, Image , with iodoacetamidofluorescein only after preincubation of spermatid nuclei with EDTA. The zinc finger domains of TP2 may play an important role in initiation of chromatin condensation and /or cessation of transcriptional activity during mammalian spermiogenesis. DTT, Dithiothreitol; IAF, Iodoacetamido-fluorescein; SDS, Sodium dodecyl sulfate; PAGE, Polyacrylamide gel electrophoresis; PMSF, Phynyl methyl sulfonyl fluoride
Resumo:
Protein kinases phosphorylate several cellular proteins providing control mechanisms for various signalling processes. Their activity is impeded in a number of ways and restored by alteration in their structural properties leading to a catalytically active state. Most protein kinases are subjected to positive and negative regulation by phosphorylation of Ser/Thr/Tyr residues at specific sites within and outside the catalytic core. The current review describes the analysis on 3D structures of protein kinases that revealed features distinct to active states of Ser/Thr and Tyr kinases. The nature and extent of interactions among well-conserved residues surrounding the permissive phosphorylation sites differ among the two classes of enzymes. The network of interactions of highly conserved Arg preceding the catalytic base that mediates stabilization of the activation segment exemplifies such diverse interactions in the two groups of kinases. The N-terminal and the C-terminal lobes of various groups of protein kinases further show variations in their extent of coupling as suggested from the extent of interactions between key functional residues in activation segment and the N-terminal αC-helix. We observe higher similarity in the conformations of ATP bound to active forms of protein kinases compared to ATP conformations in the inactive forms of kinases. The extent of structural variations accompanying phosphorylation of protein kinases is widely varied. The comparison of their crystal structures and the distinct features observed are hoped to aid in the understanding of mechanisms underlying the control of the catalytic activity of distinct subgroups of protein kinases.
Resumo:
A specific radioimmunoassay procedure was developed to monitor the plasma concentrations of thiamin-binding protein, a minor yolk constituent of the chicken egg. By using this sensitive assay, the kinetics of oestrogen-induced elaboration of this specific protein in immature chicks was investigated. After a single injection of the steroid hormone, with an initial lag period of 4–5h the thiamin-binding protein rapidly accumulated in the plasma, attaining peak concentrations around 75h and declining thereafter. A 4-fold amplification of the response was noticed during the secondary stimulation, and this increased to 9-fold during the tertiary stimulation with the steroid hormone. The magnitude of the response was dependent on the hormone dose, and the initial latent period and the duration of the ascending phase of induction were unchanged for the hormonal doses tested during both the primary and secondary stimulations. The circulatory half-life of the protein was 6h as calculated from the measurement of the rate of disappearance of the exogenously administered 125I-labelled protein. Simultaneous administration of progesterone, dihydrotestosterone or corticosterone did not alter the pattern of induction. On the other hand, hyperthyroidism markedly decreased the oestrogenic response, whereas propylthiouracil-induced hypothyroidism had the opposite effect. The anti-oestrogen E- and Z-clomiphene citrates, administered 30min before oestrogen, effectively blocked the hormonal induction. α-Amanitin and cycloheximide administered along with or shortly after the sex steroid severely curtailed the protein elaboration. A comparison of the kinetics of induction of thiamin- and riboflavin-binding proteins by oestrogen revealed that, beneath an apparent similarity, a clear-cut difference exists between the two vitamin-binding proteins, particularly with regard to hormonal dose-dependent sensitivity of induction and the half-life in circulation. The steroid-mediated elaboration of the two yolk proteins thus appears to be not strictly co-ordinated, despite several common regulatory features underlying their induction.
Hormonal modulation of riboflavin carrier protein secretion by immature rat Sertoli cells in culture
Resumo:
We report here that a protein species with biochemical and immunological similarity with chicken egg riboflavin carrier protein (RCP) is synthesized and secreted by immature rat Sertoli cells in culture. When quantitated by a specific heterologous radioimmunoassay, optimal concentrations of FSH (25 ng/ml) brought about 3-fold stimulation of RCP secretion. FSH, in the presence of testosterone (10−6 M) brought about 6-fold stimulation of secretion of RCP over the control cultures which were maintained in the absence of these two factors. The aromatase inhibitor (1,4,6-androstatrien-3,17-dione) curtailed 85% of the enhanced secretion of RCP, suggesting that the hormonal stimulation is mediated through in situ synthesized estrogen and this could be confirmed with exogenous estradiol-17 β which brought about 3 — fold enhancement of secretion of RCP at a concentration of 10−6 M. When tamoxifen (10 μM) was added along with FSH and testosterone, there was 75% decrease in the enhanced secretion of RCP. Addition of this anti-estrogen together with exogenous estradiol resulted in 55% decrease in elevated levels of RCP. Cholera toxin (1 μg/ml) and 8-bromo-cyclic AMP (0.5 mM) mimicked the action of FSH on the secretion of RCP thus suggesting that FSH stimulation of RCP production may be mediated through cyclic AMP. These findings suggest that estrogen mediates RCP induction in hormonally stimulated sertoli cells presumably to function as the carrier of riboflavin to the developing germ cells through blood-testis barrier in rodents.
Resumo:
The synthesis and phosphorylation of protein factor(s) that bind to the positivecis-acting element (−69 to −98 nt) of the CYP2B1/B2 gene have been examinedin vivoin the rat. Treatment of rats with cycloheximide, a protein synthetic inhibitor, suppresses basal as well as phenobarbitone-induced levels of CYP2B1/B2 mRNA and its run-on transcription. Under these conditions, complex formation of the nuclear extract with the positive element is also inhibited, as judged by gel shift assays. Treatment of rats with 2-aminopurine, a general protein kinase inhibitor, blocks the phenobarbitone-mediated increase in CYP2B1/B2 mRNA, cell-free transcription of a minigene construct containing the positive element, pP450e179DNA, and binding of nuclear proteins to the positive element. Treatment of rats with okadaic acid, a protein phosphatase inhibitor, mimics the effects of phenobarbitone, but only partially. Thus, both phenobarbitone and okadaic acid individually enhance binding of the nuclear protein(s) to the positive element, cell-free transcription of the minigene construct, and phosphorylation of the not, vert, similar26- and 94-kDa proteins binding to the positive element. But unlike phenobarbitone, okadaic acid is not an inducer of CYP2B1/B2 mRNA or its run-on transcription. Thus, phenobarbitone-responsive positive element interactions constitute only a minimal requirement, and okadaic acid is perhaps not able to bring about the total requirement for activation of CYP2B1/B2 gene transcription that should include interaction between the minimal promoter and further upstream elements. An intriguing feature is the antagonistic effect of okadaic acid on phenobarbitone-mediated effects on CYP2B1/B2 mRNA levels, cell-free and run-on transcription, and nuclear protein binding to the positive element. The reason for this antagonism is not clear. It is concluded that phenobarbitone treatment enhancesin vivothe synthesis and phosphorylation of protein factors binding to the positive element and these constitute a minimal requirement for the transcriptional activation of the CYP2B1/B2 gene.
Resumo:
ALUMINIUM exposure has been shown to result in aggregation of microtubule-associated protein tau in vitro. In the light of recent observations that the native random structure of tau protein is maintained in its monomeric and dimeric states as well as in the paired helical filaments characteristic of Alzheimer's disease, it is likely that factors playing a causative role in neurofibrillary pathology would not drastically alter the native conformation of tau protein. We have studied the interaction of tau protein with aluminium using circular dichroism (CD) and 27(Al) NMR spectroscopy. The CD studies revealed a five-fold increase in the observed ellipticity of the tau-aluminium assembly. The increase in elipticity was not associated with a change in the general conformation of the protein and was most likely due to an aggregation of the tau protein induced by aluminium. Al-27 NMR spectroscopy confirmed the binding of aluminium to tau protein. Hyperphosphorylation of tau in Alzheimer's disease is known to be associated with defective microtubule assembly in this condition. Abnormally phosphorylated tau exists in a polymerized form in the paired helical filaments (PHF) which constitute the neurofibrillary tangles found in Alzheimer's disease. While it is hypothesized that its altered biophysical characteristics render abnormally phosphorylated tau resistant to proteolysis, causing the formation of stable deposits,the sequence of events resulting in the polymerization of tau are little understood, as are the additional factors or modifications required for tills process. Based on the results of our spectroscopic studies, a model for the sequence of events occurring in neurofibrillary pathology is proposed.