222 resultados para POTENTIAL VORTICITY
Resumo:
This paper discusses the potential of the hybrid rocket engine as a viable and attractive mode of propulsion for both space vehicles and missiles. Research and development work on this engine in other countries is presented and evaluated. The various advantages of a hybrid engine over solid and liquid engines and its problems are highlighted. It has been argued that because of the low technology needed in the development of the hybrid system, it constitutes a cost-and-time-effective propulsion system for several applications in space programmes as well as weapon systems. In support of this conclusion, experience on the developmental studies of a variable thrust 100 kg engine is presented. Some future possibilities for hybrid propulsion systems are cited.
Resumo:
The torsional potential functions Vt(φ) and Vt(ψ) around single bonds N–Cα and Cα-C, which can be used in conformational studies of oligopeptides, polypeptides and proteins, have been derived, using crystal structure data of 22 globular proteins, fitting the observed distribution in the (φ, ψ)-plane with the value of Vtot(φ, ψ), using the Boltzmann distribution. The averaged torsional potential functions, obtained from various amino acid residues in l-configuration, are Vt(φ) = – 1.0 cos (φ + 60°); Vt(ψ) = – 0.5 cos (ψ + 60°) – 1.0 cos (2ψ + 30°) – 0.5 cos (3ψ + 30°). The dipeptide energy maps Vtot(φ, ψ) obtained using these functions, instead of the normally accepted torsional functions, were found to explain various observations, such as the absence of the left-handed alpha helix and the C7 conformation, and the relatively high density of points near the line ψ = 0°. These functions, derived from observational data on protein structures, will, it is hoped, explain various previously unexplained facts in polypeptide conformation.
Resumo:
A wire-cylinder corona discharge was studied in nitrogen and dry air in crossed electric and magnetic fields for values of magnetic field ranging from 0 to 3000 G with the wire at positive potential. In the absence of a magnetic field pre-onset streamers and pulses were observed in nitrogen. In both nitrogen and dry air breakdown streamers were observed just before spark breakdown of the gap. Furthermore, experiments in dry air at atmospheric pressure in an electric field indicate regular pre-onset streamers appearing at time intervals of 19.5 µs. The appearance of regular pre-onset streamers suggests that it is not possible for negative ions to form a sheath close to the anode as postulated by Hermstein (1960) for the formation of steady or glow corona in a point-plane gap.
Resumo:
Research on conducting polymers, organic light emitting diodes and organic solar cells has been an exciting field for the past decade. The challenge with these organic devices is the long term stability of the active material. Organic materials are susceptible to chemical degradation in the presence of oxygen and moisture. The sensitivity of these materials towards oxygen and moisture makes it imperative to protect them by encapsulation. Polymer nanocomposites can be used as encapsulation materials in order to prevent material degradation. In the present work, amine functionalized alumina was used as a cross-linking and reinforcing material for the polymer matrix in order to fabricate the composites to be used for encapsulation of devices. Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and Raman spectroscopy were used to elucidate the surface chemistry. Thermogravimetric analysis techniques and CHN analysis were used to quantify grafting density of amine groups over the surface of the nanoparticles. Mechanical characterizations of the composites with various loadings were carried out with dynamic mechanical analyzer. It was observed that the composites have good thermal stability and mechanical flexibility, which are important for an encapsulant. The morphology of the composites was evaluated using scanning electron microscopy and atomic force microscopy.
Resumo:
Potential transients are obtained by using “Padé approximants” (an accurate approximation procedure valid globally — not just perturbatively) for all amplitudes of concentration polarization and current densities. This is done for several mechanistic schemes under constant current conditions. We invert the non-linear current-potential relationship in the form (using the Lagrange or the Ramanujan method) of power series appropriate to the two extremes, namely near reversible and near irreversible. Transforming both into the Pad́e expressions, we construct the potential-time profile by retaining whichever is the more accurate of the two. The effectiveness of this method is demonstrated through illustrations which include couplings of homogeneous chemical reactions to the electron-transfer step.
Resumo:
The chemical potential of oxygen corresponding to the iron-rutile-ilmenite (IRI) and iron-ilmenite-ulvospinel (IIU) equilibria has been measured employing solid-state galvanic cells,$$Pt, Fe + TiO_2 + FeTiO_3 //(Y_2 O_3 ) ZrO_2 //Fe + FeO, Pt$$ and $${\text{Pt, Fe + FeTiO}}_{\text{3}} {\text{ + Fe}}_{\text{2}} {\text{TiO}}_{\text{4}} {\text{//(Y}}_{\text{2}} {\text{0}}_{\text{3}} {\text{) ZrO}}_{\text{2}} {\text{//Fe + FeO, Pt}}$$ in the temperature range of 875 to 1275 K and 900 to 1373 K, respectively. The cells are written such that the right-hand electrodes are positive. The electromotive force (emf) of both the cells was found to be reversible and to vary linearly with temperature over the entire range of measurement. The chemical potential of oxygen for IRI equilibrium is represented by Δμo2(IRI) = -550,724 - 29.445T + 20.374T InT(±210) J mol−1 (875 <-T<- 1184 K) = -620,260 + 369.593T - 27.716T lnT(±210) J mol−1 (1184 <-T<- 1275 K) and that for IIU equilibrium by Δμo2(IIU) = -501,800 - 49.035T + 20.374T lnT(±210) J mol−1 (900 <-T<- 1184 K) = -571,336 + 350.003T− 27.716T lnT(=−210) J mol-1 (1184 <-T<- 1373 K) The standard Gibbs energy changes for IRI and IIU equilibria have been deduced from the measured oxygen potentials. Since ilmenite contains small amounts of Ti³+ ions, a correction for the activity of FeTiO3 has been incorporated by assuming ideal mixing on each cation sublattice in the FeTiO3-Ti2O3 system. Similarly, the ulvospinel contains some Fe³+ ions and a correction for the activity of Fe2TiO4 has been included by modeling the Fe2TiO4-Fe3O4 system. The third-law analysis of the results obtained for IRI equilibrium gives ΔH 298 0 = -575 (±1.0) kJ mol-1 and for IIU equilibrium yields ΔH 298 0 = -523.7 (±0.7) kJ mol−1}. The present results suggest that Fe2+ and Ti4+ cations mix almost ideally on the octahedral site of spinel lattice in Fe2TiO4, giving rise to a configurational contribution of 2R In 2 (11.5256 J mol-1 K-1) to the entropy of Fe2TiO4.
Resumo:
The Madelung potential and formation energy of the superconducting compound YBa2Cu3O7 have been computed for hole localization at different sites in the crystal. The cases considered include Cu3+ ion at Cu(1) and Cu(2) sites, O− ion at O(1), O(2), O(3) and O(4) sites and combinations of O− and Cu3+ ions at O(4) and Cu(1) and O(2,3) and Cu(2) sites. The two lowest-energy configurations correspond to Cu3+ ion at Cu(1) site and O− ion at O(4) site. The difference in formation energy between those configurations is relatively small. The next preferred configuration corresponds to simultaneous partial localization of the hole at Cu (1) site and O(1) site. Other configurations are much less stable. The results suggest a resonating or fluctuating valence model for YBa2Cu3O7.
Resumo:
The self-complementary DNA fragment CCGGCGCCGG crystallizes in the rhombohedral space group R3 with unit cell parameters a = 54.07 angstrom and c = 44.59 angstrom. The structure has been determined by X-ray diffraction methods at 2.2 angstrom resolution and refined to an R value of 16.7%. In the crystal, the decamer forms B-DNA double helices with characteristic groove dimensions: compared with B-DNA of random sequence, the minor groove is wide and deep and the major groove is rather shallow. Local base pair geometries and stacking patterns are within the range commonly observed in B-DNA crystal structures. The duplex bears no resemblance to A-form DNA as might have been expected for a sequence with only GC base pairs. The shallow major groove permits an unusual crystal packing pattern with several direct intermolecular hydrogen bonds between phosphate oxygens and cytosine amino groups. In addition, decameric duplexes form quasi-infinite double helices in the crystal by end-to-end stacking. The groove geometries and accessibilities of this molecule as observed in the crystal may be important for the mode of binding of both proteins and drug molecules to G/C stretches in DNA.
Resumo:
There is huge knowledge gap in our understanding of many terrestrial carbon cycle processes. In this paper, we investigate the bounds on terrestrial carbon uptake over India that arises solely due to CO (2) -fertilization. For this purpose, we use a terrestrial carbon cycle model and consider two extreme scenarios: unlimited CO2-fertilization is allowed for the terrestrial vegetation with CO2 concentration level at 735 ppm in one case, and CO2-fertilization is capped at year 1975 levels for another simulation. Our simulations show that, under equilibrium conditions, modeled carbon stocks in natural potential vegetation increase by 17 Gt-C with unlimited fertilization for CO2 levels and climate change corresponding to the end of 21st century but they decline by 5.5 Gt-C if fertilization is limited at 1975 levels of CO2 concentration. The carbon stock changes are dominated by forests. The area covered by natural potential forests increases by about 36% in the unlimited fertilization case but decreases by 15% in the fertilization-capped case. Thus, the assumption regarding CO2-fertilization has the potential to alter the sign of terrestrial carbon uptake over India. Our model simulations also imply that the maximum potential terrestrial sequestration over India, under equilibrium conditions and best case scenario of unlimited CO2-fertilization, is only 18% of the 21st century SRES A2 scenarios emissions from India. The limited uptake potential of the natural potential vegetation suggests that reduction of CO2 emissions and afforestation programs should be top priorities.
Resumo:
Climate change is projected to impact forest ecosystems, including biodiversity and Net Primary Productivity (NPP). National level carbon forest sector mitigation potential estimates are available for India; however impacts of projected climate change are not included in the mitigation potential estimates. Change in NPP (in gC/m(2)/yr) is taken to represent the impacts of climate change. Long term impacts of climate change (2085) on the NPP of Indian forests are available; however no such regional estimates are available for short and medium terms. The present study based on GCM climatology scenarios projects the short, medium and long term impacts of climate change on forest ecosystems especially on NPP using BIOME4 vegetation model. We estimate that under A2 scenario by the year 2030 the NPP changes by (-5) to 40% across different agro-ecological zones (AEZ). By 2050 it increases by 15% to 59% and by 2070 it increases by 34 to 84%. However, under B2 scenario it increases only by 3 to 25%, 3.5 to 34% and (-2.5) to 38% respectively, in the same time periods. The cumulative mitigation potential is estimated to increase by up to 21% (by nearly 1 GtC) under A2 scenario between the years 2008 and 2108, whereas, under B2 the mitigation potential increases only by 14% (646 MtC). However, cumulative mitigation potential estimates obtained from IBIS-a dynamic global vegetation model suggest much smaller gains, where mitigation potential increases by only 6% and 5% during the period 2008 to 2108.
Resumo:
A simple method using a combination of conformal mapping and vortex panel method to simulate potential flow in cascades is presented. The cascade is first transformed to a single body using a conformal mapping, and the potential flow over this body is solved using a simple higher order vortex panel method. The advantage of this method over existing methodologies is that it enables the use of higher order panel methods, as are used to solve flow past an isolated airfoil, to solve the cascade problem without the need for any numerical integrations or iterations. The fluid loading on the blades, such as the normal force and pitching moment, may be easily calculated from the resultant velocity field. The coefficient of pressure on cascade blades calculated with this methodology shows good agreement with previous numerical and experimental results.
Resumo:
The use of the shear wave velocity data as a field index for evaluating the liquefaction potential of sands is receiving increased attention because both shear wave velocity and liquefaction resistance are similarly influenced by many of the same factors such as void ratio, state of stress, stress history and geologic age. In this paper, the potential of support vector machine (SVM) based classification approach has been used to assess the liquefaction potential from actual shear wave velocity data. In this approach, an approximate implementation of a structural risk minimization (SRM) induction principle is done, which aims at minimizing a bound on the generalization error of a model rather than minimizing only the mean square error over the data set. Here SVM has been used as a classification tool to predict liquefaction potential of a soil based on shear wave velocity. The dataset consists the information of soil characteristics such as effective vertical stress (sigma'(v0)), soil type, shear wave velocity (V-s) and earthquake parameters such as peak horizontal acceleration (a(max)) and earthquake magnitude (M). Out of the available 186 datasets, 130 are considered for training and remaining 56 are used for testing the model. The study indicated that SVM can successfully model the complex relationship between seismic parameters, soil parameters and the liquefaction potential. In the model based on soil characteristics, the input parameters used are sigma'(v0), soil type. V-s, a(max) and M. In the other model based on shear wave velocity alone uses V-s, a(max) and M as input parameters. In this paper, it has been demonstrated that Vs alone can be used to predict the liquefaction potential of a soil using a support vector machine model. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
An attempt has been made to forecast the potential of thermophilic fungi to grow in soil in the laboratory and in the field in the presence of a predominantly mesophilic fungal flora at usual temperature. The respiratory rate of thermophilic fungi was markedly responsive to changes in temperature, but that of mesophilic fungi was relatively independent of such changes. This suggested that in a thermally fluctuating environment, thermophilic fungi may be at a physiological disadvantage compared to mesophilic fungi. In mixed cultures in soil plates, thermophilic fungi outgrew mesophilic fungi under a fluctuating temperature regime only when the amplitude of the fluctuating temperatures was small and approached their temperature optima for growth. An antibody probe was used to detect the activity of native or an introduced strain of a thermophilic fungus, Thermomyces lanuginosus, under field conditions. The results suggest that although widespread, thermophilic fungi are ordinarily not an active component of soil microflora. Their presence in soil most likely may be the result of the aerial dissemination of propagules from composting plant material.