140 resultados para P-containing compounds
Resumo:
The benzylic methylene protons in a large number of benzyloxycarbonyl alpha-aminoisobutyric acid (Z-Aib) containing peptides, show chemical shift nonequivalence. The magnitude of the geminal nonequivalence is correlated with the involvement of the urethane carbonyl group, in an intramolecular hydrogen bond. Studies of the model compounds Z-Aib-Aib-Ala-NHMe, and Z-Aib-Aib-Aib-Pro-OMe clearly establish the presence of intramolecular hydrogen bonds, involving the urethane CO group. In both compounds marked anisochrony of the benzylic methylene protons is demonstrated. In Z-Aib-Aib-Pro-OMe, where a 4 leads to 1 hydrogen bonded beta-turn is not possible, the benzylic-CH2-protons appear as a singlet in CDCl3 and have a very small chemical shift difference in (CD3)2SO. The observation of such nonequivalence is of value in establishing whether the amino terminal Aib-Pro beta-turn is retained in large peptide-fragments of alamethicin.
Resumo:
A number of new triclosan-conjugated analogs bearing biodegradable ester linkage have been synthesized, characterized and evaluated for their antimalarial and antibacterial activities. Many of these compounds exhibit good inhibition against Plasmodium falciparum and Escherichia coli. Among them tertiary amine containing triclosan-conjugated prodrug (5) inhibited both P. falciparum (IC50; 0.62 μM) and E. coli (IC50; 0.26 μM) at lower concentrations as compared to triclosan. Owing to the presence of a cleavable ester moiety, these new prodrugs are hydrolyzed under physiological conditions and parent molecule, triclosan, is released. Further, introduction of tertiary/quaternary functionality increases their cellular uptake. These properties impart them with higher potency to their antimalarial as well as antibacterial activities. The best compound among them 5 shows close to four-fold enhanced activities against P. falciparum and E. coli cultures as compared to triclosan.
Resumo:
The diketopyrrolopyrrole-based copolymers PDPP-BBT and TDPP-BBT were synthesized and used as donor for bulk heterojunction photovoltaic devices. The photophysical properties of these polymers showed absorption in the range 500-600 nm with a maximum peak around 563 nm, while TDPP-BBT showed broadband absorption in the range 620 - 800 nm with a peak around 656 nm. The power conversion efficiencies (PCE) of the polymer solar cells based on these copolymers and [6,6]-phenyl C61 butyric acid methyl ester (PCBM) were 0.68% (as cast PDPP-BBT:PCBM), 1.51% (annealed PDPP-BBT:PCBM), 1.57% (as cast TDPPBBT: PCBM), and 2.78% (annealed TDPP-BBT:PCBM), under illumination of AM 1.5 (100 mW/cm2). The higher PCE for TDPP-BBT-based polymer solar cells has been attributed to the low band gap of this copolymer as compared to PDPP-BBT, which increases the numbers of photogenerated excitons and corresponding photocurrent of the device. These results indicate that PDPP-BBT and TDPP-BBT act as excellent electron donors for bulk heterojunction devices.
Resumo:
CaO-SiO2-FeOx-P2O5-MgO bearing slags are typical in the basic oxygen steelmaking (BOS) process. The partition ratio of phosphorus between slag and steel is an index of the phosphorus holding capacity of the slag, which determines the phosphorus content achievable in the finished steel. The influences of FeO concentration and basicity on the equilibrium phosphorus partition ratios were experimentally determined at temperatures of 1873 and 1923 K, for conditions of MgO saturation. The partition ratio initially increased with basicity but attained a constant value beyond basicity of 2.5. An increase in FeO concentration up to approximately 13 to 14 mass pet was beneficial for phosphorus partition.
Resumo:
Two coordination polymers [Ni(ipt)(dap)(2)](n) (1) and [Cu(ipt)(dap)H2O](n) center dot nH(2)O (2) with an overall one-dimensional arrangement and having isophthalate (ipt) as bridging moieties and chelating 1,3-diaminopropane (dap) as structure modulating units have been prepared and characterized by crystallographic, spectroscopic and thermo-analytical studies. Both have an overall one-dimensional zig-zag nature but with a distorted octahedral NiN4O2 chromophore for 1 and a distorted square pyramidal CuN2O3 chromophore for 2. Even though the ipt units are acting as bridging units through mono-dentatively coordinating carboxylate functions in both polymers, compound 1 has the carboxylate oxygen linkages at the trans positions, while in 2 the oxygen linkages occur at the cis positions leading to a different type of zig-zag arrangement. Relevant spectral and bonding parameters also could be evaluated for the compounds using UV-Vis and EPR spectra. Thermal stability and possible structural modifications on thermal treatment of the compounds were also investigated and the relevant thermodynamic and kinetic parameters evaluated from the thermal data. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
The crystal structures of four peptides incorporating 1-aminocycloheptane-1-carboxylic acid (Ac7c) are described. Boc-Aib-Ac7c-NHMe and Boc-Pro-Ac7c-Ala-OMe adopt beta-turn conformations stabilized by an intramolecular 4----1 hydrogen bond, the former folding into a type-I/III beta-turn and the latter into a type-II beta-turn. In the dipeptide esters, Boc-Aib-Ac7c-OMe and Boc-Pro-Ac7c-OMe, the Ac7c and Aib residues adopt helical conformations, while the Pro residue remains semi-extended in both the molecules of Boc-Pro-Ac7c-OMe found in the asymmetric unit. The cycloheptane ring of Ac7c residues adopts a twist-chair conformation in all the peptides studied. 1H-NMR studies in CDCl3 and (CD3)2SO and IR studies in CDCl3 suggest that Boc-Aib-Ac7c-NHMe and Boc-Pro-Ac7c-Ala-OMe maintain the beta-turn conformations in solution.
Resumo:
The crystal structures of four peptides incorporating 1-aminocycloheptane-1-carboxylic acid (Ac7c) are described. Boc-Aib-Ac7c-NHMe and Boc-Pro-Ac7c-Ala-OMe adopt beta-turn conformations stabilized by an intramolecular 4----1 hydrogen bond, the former folding into a type-I/III beta-turn and the latter into a type-II beta-turn. In the dipeptide esters, Boc-Aib-Ac7c-OMe and Boc-Pro-Ac7c-OMe, the Ac7c and Aib residues adopt helical conformations, while the Pro residue remains semi-extended in both the molecules of Boc-Pro-Ac7c-OMe found in the asymmetric unit. The cycloheptane ring of Ac7c residues adopts a twist-chair conformation in all the peptides studied. 1H-NMR studies in CDCl3 and (CD3)2SO and IR studies in CDCl3 suggest that Boc-Aib-Ac7c-NHMe and Boc-Pro-Ac7c-Ala-OMe maintain the beta-turn conformations in solution.
Resumo:
The peptide Boc-Gly-Dpg-Gly-Gly-Dpg-Gly-NHMe (1) has been synthesized to examine the conformational preferences of Dpg residues in the context of a poor helix promoting sequence. Single crystals of 1 were obtained in the space group P21/c with a = 13.716(2) Å, b = 12.960(2) Å, c = 22.266(4) Å, and β = 98.05(1)°; R = 6.3% for 3660 data with |Fo| > 4σ. The molecular conformation in crystals revealed that the Gly(1)-Dpg(2) segment adopts φ, ψ values distorted from those expected for an ideal type II‘ β-turn (φGly(1) = +72.0°, ψGly(1) = −166.0°; φDpg(2) = −54.0°, ψDpg(2) = −46.0°) with an inserted water molecule between Boc-CO and Gly(3)NH. The Gly(3)-Gly(4) segment adopts φ, ψ values which lie broadly in the right handed helical region (φGly(3) = −78.0°, ψGly(3) = −9.0°; φGly(4) = −80.0°, ψGly(4) = −18.0°). There is a chiral reversal at Dpg(5) which takes up φ, ψ values in the left handed helical region. The Dpg(5)-Gly(6) segment closely resembles an ideal type I‘ β-turn (φDpg(5) = +56.0°, ψDpg(5) = +32.0°; φGly(6) = +85.0°, ψGly(6) = −3.0°). Molecules of both chiral senses are found in the centrosymmetric crystal. The C-terminus forms a hydrated Schellman motif, with water insertion into the potential 6 → 1 hydrogen bond between Gly(1)CO and Gly(6)NH. NMR studies in CDCl3 suggest substantial retention of the multiple turn conformation observed in crystals. In solution the observed NOEs support local helical conformation at the two Dpg residues.
Resumo:
The effects of inserting unsubstituted omega-amino acids into the strand segments of model beta-hairpin peptides was investigated by using four synthetic decapeptides, Boc-Lcu-Val-Xxx-Val-D-Pro-Gly-Leu-Xxx-Val-Val- OMe: pepticle 1 (Xxx=Gly), pepticle 2 (Xxx=beta Gly=beta hGly=homoglycine, beta-glycine), pepticle 3 (Xxx=gamma Abu=gamma-aminobutyric acid), pepticle 4 (Xxx= delta Ava=delta-aminovaleric acid). H-1 NMR studies (500 MHz, methanol) reveal several critical cross-strand NOEs, providing evidence for P-hairpin conformations in peptides 2-4. In peptide 3, the NMR results support the formation of the nucleating turn, however, evidence for cross-strand registry is not detected. Single-crystal X-ray diffraction studies of peptide 3 reveal a beta-hairpin conformation for both molecules in the crystallographic asymmetric unit, stabilized by four cross-strand hydrogen bonds, with the gamma Abu residues accommodated within the strands. The D-Pro-Gly segment in both molecules (A,B) adopts a type II' beta-turn conformation. The circular dichroism spectrum for peptide 3 is characterized by a negative CD band at 229 rim, whereas for peptides 2 and 4, the negative band is centered at 225 nm, suggesting a correlation between the orientation of the amide units in the strand segments and the observed CD pattern.
Resumo:
The dipole moments of di-p-tolyl selenide (1.74 D), di-p-tolyl selenide (1.00 D), di-m-tolyl selenide (1.66 D), di-p-anisyl selenide (2.35 D) and di-p-tolyl selenium dichloride (3.69 D) have been determined in benzene at 35°. The results are analysed in terms of mesomeric effects and internal rotation in these systems. The dipole moments of a few aliphatic selenides have been theoretically evaluated.
Resumo:
A colorimetric assay for the quantitative determination of catecholic compounds was developed. The method was based on the observation that a red color was formed when nitrite was added to a solution containing pyrocatechol and sodium tungstate. Aromatic amines interfere with the reaction but this could be overcome by the addition of formaldehyde. When interfering substances are present along with pyrocatechol, it can be readily separated by paper chromatography and estimated after elution from the filter paper.
Resumo:
The recombination properties of cobalt centers in p-type germanium containing cobalt in the concentration range 1014 to 1016 atoms/cm3 have been investigated. The measurement of lifetime has been carried out by steady-state photoconductivity and photo-magneto-electric methods in the temperature range 145 to 300°K. The cross-sections Sno (electron capture cross-section at neutral centers). Sn- (electron capture cross-section at singly negatively charged centers) and their temperature variations have been estimated by the analysis of the lifetime data on the basis of Sah-Shockley's multi-level formula. The value of Sno is (15±5).10-16 cm2 and is temperature independent. The value of Sn- is ≈4·10-16 cm2 around 225°K and it increases with increase of temperature. The possible mechanisms for capture at neutral and repulsive centers are discussed and a summary of the capture cross-sections for cobalt centers is given. A comparison of the cross-section values of cobalt and their temperature variations with those of the related impurities-manganese, iron and nickel-in germanium has been made.
Resumo:
The formal charge distributions in and the dipole moments of some organophosphines and arsines have been calculated, and the dipole moments of (p-chlorophenyl)dichlorophosphine (2.28 D) and (p-bromophenyl)dichlorophosphine (2.04 D) have been determined in benzene at 35° C. The differences between the observed and the calculated moments are explained in terms of dπ---pπ back-bonding and hyperconjugative effects in alkylhaloarsines. The mesomeric effects operating in the aromatic systems are evaluated by comparing the moments with those for the corresponding aliphatic systems. In unsaturated compounds the differences are attributed to mesomeric effects involving the expansion of arsenic valence shell.
Resumo:
The role of N-terminus diproline segments in facilitating helical folding in short peptides has been investigated in a set of model hexapeptides of the type Piv-Xxx-Yyy-Aib-Leu-Aib-Phe-OMe (Piv, pivaloyl). Nine sequences have been investigated with the following N-terminus dipeptide segments: (D)Pro-Ala (4) and Pro-Psi Pro (5, Psi, pseudoproline), Ala-Ala (6), Ala-Pro (7), Pro-Ala (8), Aib-Ala (9), Ala-Aib (10). The analog sequences Piv-Pro-Pro-Ala-Leu-Aib-Phe-OMe (2) and Piv-Pro-Pro-Ala-Aib-Ala-Aib-OMe (3) have also been studied. Solid state conformations have been determined by X-ray crystallography for peptides 4, 6, and 8 and compared with the previously determined crystal structure of peptide 1 (Boc-Pro-Pro-Aib-Leu-Aib-Val-OMe); (Rai et al., JACS 2006, 128, 7916-7928). Peptides 1 and 6 adopt almost identical helical conformations with unfolding of the helix at the N-terminus Pro (1) residue. Peptide 4 reveals the anticipated (D)Pro-Ala type II' beta-turn, followed by a stretch of 3(10)-helix. Peptide 8 adopts a folded conformation stabilized by four successive 4 -> 1 intramolecular hydrogen bonds. Ala (2) adopts an alpha(L) conformation, resulting in a type II beta-turn conformation followed by a stretch of 3(10)-helix. Conformational properties in solution were probed using solvent perturbation of NH chemical shifts which permit delineation of hydrogen bonded NH groups and nuclear Overhauser effects (NOEs) between backbone protons, which are diagnostic of local residue conformations. The results suggest that continuous helical conformations are indeed significantly populated for peptides 2 and 3. Comparison of the results for peptides 1 and 2, suggest that there is a significant influence of the residue that follows diproline segments in influencing backbone folding. (C) 2010 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 94: 360-370, 2010.