143 resultados para Osteoclast precursors
Resumo:
While the need for FSH in initiating spermatogenesis in the immature rat is well accepted, its requirement for maintenance of spermatogenesis in adulthood is questioned. In the current study, using gonadotropin antisera to neutralize specifically either endogenous FSH or LH, we have investigated the effect of either FSH or LH deprivation for a 10-day period on (i) testicular macromolecular synthesis in vitro, (ii) the activities of testicular germ cell specific LDH-X and hyaluronidase enzymes, and finally (iii) on the concentration of sulphated glycoprotein (SGP-2), one of the Sertoli cell marker proteins. Both immature (35-day-old) and adult (100-day-old) rats have been used in this study. Since LH deprivation leads to a near total blockade of testosterone production, the ability of exogenous testosterone supplementation to override the effects of LH deficiency has also been evaluated. Deprivation of either of the gonadotropins significantly affected in vitro RNA and protein synthesis by both testicular minces as well as single cell preparations. Fractionation of dispersed testicular cells preincubated with labelled precursors of RNA and protein on Percoll density gradient revealed that FSH deprivation affected specifically the rate of RNA and protein synthesis of germ cell and not Leydig cell fraction. LH but not FSH deprivation inhibited [3H]thymidine incorporation into DNA. The inhibitory effect of LH could mostly be overriden by testosterone supplementation. LDH-X and hyaluronidase activities of testicular homogenates of adult rats showed significant reduction (50%; P less than .05) following either FSH or LH deprivation. Again testosterone supplementation was able to reverse the LH inhibitory effect.
Resumo:
Graphene oxide-intercalated alpha-metal hydroxides were prepared using layers from the delaminated colloidal dispersions of cetyltrimethylammonium-intercalated graphene oxide and dodecylsulfate-intercalated alpha-hydroxide of nickel/cobalt as precursors. The reaction of the two dispersions leads to de-intercalation of the interlayer ions from both the layered solids and the intercalation of the negatively charged graphene oxide sheets between the positively charged layers of the alpha-hydroxide. Thermal decomposition of the intercalated solids yields graphene/nanocrystalline metal oxide composites. Electron microscopy analysis of the composites indicates that the nanoparticles are intercalated between graphene layers. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Using dynamic TG in H2, X-ray powder diffraction and Mössbauer Spectroscopy the reactivities fot hydrogen reduction of Fe2O3 prepared at different temperatures, Fe2O3 doped with oxides of Mn, Co, Ni and Cu prepared at 300DaggerC from nitrate precursors and intermediate spinels derived from above samples during reduction have been explored. The reactivity is higher for finely divided Fe2O3 prepared at 250DaggerC. The reduction is retarded by Mn, marginally affected by Co and accelerated by Ni and Cu, especially at higher (5 at.%) dopant concentration. These reactivities confirmed also by isothermal experiments, are ascribed to the nature of disorder in the metastable intermediate spinels and to hydrogen rsquospill overrsquo effects.
Resumo:
Grignard reaction followed by ozonolysis, or ozonolysis followed by Grignard reaction on the pentenoate 8, generates the diol 9. Cyclodehydration of 9 leads to the 3-oxacuparene (6), whereas PCC oxidation furnishes the 3-oxa-beta-cuparenone (7). Methanesulfonic acid-P2O5 transforms 7 into cyclopentenones 4, 5, known precursors to beta-cuparenone (3), and the naphthalenone 14.
Resumo:
Previous work from our laboratory had demonstrated that deletion of TGL3 encoding the major yeast triacylglycerol (TAG) lipase resulted in decreased mobilization of TAG, a sporulation defect and a changed pattern of fatty acids, especially increased amounts of C22:0 and C26:0 very long chain fatty acids in the TAG fraction K. Athenstaedt and G. Daum, J. Biol. Chem. 278 (2003) 23317-23323]. To study a possible link between TAG lipolysis and membrane lipid biosynthesis, we carried out metabolic labeling experiments with wild type and deletion strains bearing defects in the three major yeast TAG lipases, Tgl3p, Tgl4p and Tgl5p. Using H-3]inositol. P-32]orthophosphate, 3H]palmitate and C-14]acetate as precursors for complex lipids we demonstrated that tgl mutants had a lower level of sphingolipids and glycerophospholipids than wild type. ESI-MS/MS analyses confirmed that TAG accumulation in these mutant cells resulted in reduced amounts of phospholipids and sphingolipids. In vitro and in vivo experiments revealed that TAG lipolysis markedly affected the metabolic flux of long chain fatty acids and very long chain fatty acids required for sphingolipid and glycerophospholipid synthesis. Activity and expression level of fatty acid elongases, Elo1p and Elo2p were enhanced as a consequence of reduced TAG lipolysis. Finally, the pattern of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine molecular species was altered in tgl deletion strain underlining the important role of TAG turnover in maintaining the pool size of these compounds and the remodeling of complex membrane lipids. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
A solution precursor plasma spray (SPPS) technique has been used for direct deposition of cerium oxide nanoparticles (CNPs) from various cerium salt solutions as precursors. Solution precursors were injected into the hot zone of a plasma plume to deposit CNP coatings. A numerical study of the droplet injection model has been employed for microstructure development during SPPS. The decomposition of each precursor to cerium oxide was analyzed by thermogravimetric-differential thermal analysis and validated by thermodynamic calculations. The presence of the cerium oxide phase in the coatings was confirmed by X-ray diffraction studies. Transmission electron microscopy studies confirmed nanocrystalline (grain size <14 nm) characteristic of the coatings. X-ray photoelectron spectroscopy studies indicated the presence of a high concentration of Ce3+ (up to 0.32) in the coating prepared by SPPS. The processing and microstructure evolution of cerium oxide coatings with high nonstoichiometry are reported.
Resumo:
Sol-Gel method was employed to synthesize pure and wide ranged La-modified CaCu3Ti4O12 ceramics using mixed acetate-nitrate-alcoxide individual metal-ion precursors. SEM pictures revealed that grain size monotonously decreases with the extent of La incorporation. All the prepared ceramics manifested dielectric constant in the range similar to 10(3)-10(4). Dielectric loss was found to decrease with La incorporation and got optimized for 20% La3+ while retaining its high dielectric constant which may be industrially important. Room temperature Impedance spectroscopy suggested that decrease in grain resistance is responsible for reduction in dielectric loss according to Internal Barrier Layer Capacitor (IBLC) model.
Resumo:
Fine particle spinel manganites have been prepared by thermal decomposition of the precursors N2H5M1/3Mn2/3(N2H3COO)3 · H2O (M = Co and Ni) and M1/3 Mn2/3(N2H3COO)2 · 2H2O (M = Mg and Zn), as well as by the combustion of redox mixtures containing M(II) nitrate (M = Mg, Co, Ni, Cu, and Zn), Mn(II) nitrate, and maleic hydrazide (MH) in the required molar ratio. Both the precursor and redox mixtures undergo self-propagating, gas-producing, exothermic reactions once ignited at 250-375°C to yield corresponding manganites in less than 5 min. Formation of single phase products was confirmed by X-ray powder diffraction patterns. The manganites are of submicrometer size and have surface area in the range 20-76 m2/g.
Resumo:
Mechanical alloying (MA) pioneered by Benjamin is a technique for the extension of solid solubility in systems where the equilibrium solid solubility is limited. This technique has, in recent years, emerged as a novel alternate route for rapid solidification processing (RSP) for the production of metastable crystalline, quasicrystalline, amorphous phases and nanocrystalline materials. The glass-forming composition range (GFR), in general, is found to be much wider in case of MA in comparison with RSP. The amorphous powders produced by MA can be compacted to bulk shapes and sizes and can be used as precursors to obtain high strength materials. This paper reports the work done on solid state amorphization by MA in Ti-Ni-Cu and Al-Ti systems where a wide GFR has been obtained. Al-Ti is a classic case where no glass formation has been observed by RSP, while a GFR of 25–90 at.% Ti has been obtained in this system, thus demonstrating the superiority of MA over RSP. The free energy calculations made to explain GFR are also presented.
Resumo:
Chromium substituted beta diketonate complexes of aluminium have been synthesized and employed as precursors for a novel soft chemistry process wherein microwave irradiation of a solution of the complex yields within minutes well crystallized needles of alpha (Al1 XCrx)(2)O-3 measuring 20 30 nm in diameter and 50 nm long By varying the microwave irradiation parameters and using a surfactant such as polyvinyl pyrrolidone the crystallite size and shape can be controlled and their agglomeration prevented These microstructural parameters as well as the polymorph of the Cr substituted Al2O3 formed may also be controlled by employing a different complex Samples of alpha (Al1 XCrx)(2)O-3 have been characterized by XRD FTIR and TEM The technique results in material of homogeneous metal composition, as shown by EDAX and can be adjusted as desired The technique has been extended to obtain coatings of alpha (Al1 XCrx)(2)O-3 on Si(100)
Resumo:
In situ EXAFS and X-ray diffraction investigations of Ni/TiO2 catalysts show that NiTiO3 is formed as an intermediate during calcination of catalyst precursors prepared by the wet-impregnation method; the intermediate is not formed when ion-exchange method is used for the preparation. On hydrogen reduction, NiTiO3 gives rise to Ni particles dispersed in the TiO2(rutile) matrix. The occurrence of the anatase-rutile transformation of the TiO2 support, the formation and subsequent decomposition/reduction of NiTiO3 as well as the unique interface properties of the Ni particles are all factors of importance in giving rise to metal-support interaction. Active TiO2(anatase) prepared from gel route gives an additional species involving Ni3+.
Resumo:
The synthesis of (±)-3a,4,4,7a-tetramethylhydrindan-2-one 8, containing three contiguous quaternary carbons as present in thapsanes, and the total synthesis of thaps-7(15)-ene 6 and thaps-6-ene 7, probable biogenetic precursors of thapsanes, have been achieved. Thus, orthoester Claisen rearrangement of cyclogeraniol 14, followed by hydrolysis of the resultant ester 16 furnished the eneacid 13. Copper sulfate-catalysed intramolecular cyclopropanation of the diazo ketone 18, derived from the acid 13, generated the cyclopropyl ketone 12. Regiospecific reductive cleavage of cyclopropyl ketone 12 furnished the hydrindanone 8, whereas the diazo ketone 26 furnished the hydrindanone 28avia the cyclopropyl ketone 27. Wittig methylenation of the hydrindanone 28a furnished thaps-7(15)-ene 6, which on isomerisation gave thaps-6-ene 7. Allylic oxidation of thaps-6-ene furnished the thapsenone 31, a degradation product of the natural thapsane 1b.
Resumo:
The cell envelope of Mycobacterium tuberculosis (M. tuberculosis) is composed of a variety of lipids including mycolic acids, sulpholipids, lipoarabinomannans, etc., which impart rigidity crucial for its survival and pathogenesis. Acyl CoA carboxylase (ACC) provides malonyl-CoA and methylmalonyl-CoA, committed precursors for fatty acid and essential for mycolic acid synthesis respectively. Biotin Protein Ligase (BPL/BirA) activates apo-biotin carboxyl carrier protein (BCCP) by biotinylating it to an active holo-BCCP. A minimal peptide (Schatz), an efficient substrate for Escherichia coli BirA, failed to serve as substrate for M. tuberculosis Biotin Protein Ligase (MtBPL). MtBPL specifically biotinylates homologous BCCP domain, MtBCCP87, but not EcBCCP87. This is a unique feature of MtBPL as EcBirA lacks such a stringent substrate specificity. This feature is also reflected in the lack of self/promiscuous biotinylation by MtBPL. The N-terminus/HTH domain of EcBirA has the selfbiotinable lysine residue that is inhibited in the presence of Schatz peptide, a peptide designed to act as a universal acceptor for EcBirA. This suggests that when biotin is limiting, EcBirA preferentially catalyzes, biotinylation of BCCP over selfbiotinylation. R118G mutant of EcBirA showed enhanced self and promiscuous biotinylation but its homologue, R69A MtBPL did not exhibit these properties. The catalytic domain of MtBPL was characterized further by limited proteolysis. Holo-MtBPL is protected from proteolysis by biotinyl-59 AMP, an intermediate of MtBPL catalyzed reaction. In contrast, apo-MtBPL is completely digested by trypsin within 20 min of co-incubation. Substrate selectivity and inability to promote self biotinylation are exquisite features of MtBPL and are a consequence of the unique molecular mechanism of an enzyme adapted for the high turnover of fatty acid biosynthesis.
Resumo:
Hard, low stress diamond-like carbon films have been deposited by plasma assisted chemical vapour deposition technique, The various substrates include soft IR components like ZnS and ZnSe windows, Gaseous precursors such as propene, ethyl alcohol and acetone have been used to synthesize the films to study the nature of precursors in determining the film compatibility with the underlying component (substrate), The residual compressive stresses, the Young's modulus and the adhesion energy of the films have been estimated to be 10(10) dynes/cm(2), 10(10) N/m(2) and 1000 ergs/cm(2) respectively. To alleviate film failure, a study on the effects of additive gases such as hydrogen and the use of buffer layers such as ZrO2, has been undertaken, The diamond-like carbon films produced here are hard (5000 kg/mm(2)), specularly smooth in the wavelength region from 2.5 mu m to 20 mu m, with no microstructural features and have excellent adhesion on ZnS and ZnSe windows. The figure of merit of these films for aero-space applications has been evaluated by subjecting the film-buffer layer ZnS or ZnSe composite stack to wind, dust and rain erosion studies and by establishing the integrity of the specular IR transmittance of the stack upto 16 or 20 mu m as the case may be.
Resumo:
Pure Y2O3 and Y2O3---ZrO2 solid solutions have been prepared by melt atomization and by pyrolysis of nitrate solutions. Extended solubility is readily achieved in both techniques for the entire composition range investigated: melts with 0–30% ZrO2 and precursors with 0–50% ZrO2. However, solidification of under cooled droplets yields almost exclusively single phase powders with the structure of cubic yttria (D53). In contrast, the pyrolysis route leads to a sequence of metastable microstructures beginning with a nanocrystalline disordered fluorite-based (C1) solid solution. Further heating leads to the evolution of much larger (micron size) flake crystals with a {001} texture, concurrent with partial ordering of the oxygen ions to the sites occupied in the D53 structure. The driving force for ordering and the rate of grain growth decrease with increasing ZrO2 addition. Abrupt heating to high temperatures or electron irradiation can induce ordering without substantial grain growth. There is no significant reduction in porosity during the recrystallization, which with the other observations suggests that grain growth is driven by the free energy available for the ordering transformation from fluorite to the yttria structure. This route offers opportunities for single crystal thin film development at relatively low processing temperatures.