179 resultados para Ore carriers.
Resumo:
The Orthogonal Frequency Division Multiplexing (OFDM) is a form of Multi-Carrier Modulation where the data stream is transmitted over a number of carriers which are orthogonal to each other i.e. the carrier spacing is selected such that each carrier is located at the zeroes of all other carriers in the spectral domain. This paper proposes a new novel sampling offset estimation algorithm for an OFDM system in order to receive the OFDM data symbols error-free over the noisy channel at the receiver and to achieve fine timing synchronization between the transmitter and the receiver. The performance of this algorithm has been studied in AWGN, ADSL and SUI channels successfully.
Resumo:
We present a simplified yet analytical formulation of the carrier backscattering coefficient for zig-zag semiconducting single walled carbon nanotubes under diffusive regime. The electron-phonon scattering rate for longitudinal acoustic, optical, and zone-boundary phonon emissions for both inter- and intrasubband transition rates have been derived using Kane's nonparabolic energy subband model.The expressions for the mean free path and diffusive resistance have been formulated incorporating the aforementioned phonon scattering. Appropriate overlap function in Fermi's golden rule has been incorporated for a more general approach. The effect of energy subbands on low and high bias zones for the onset of longitudinal acoustic, optical, and zone-boundary phonon emissions and absorption have been analytically addressed. 90% transmission of the carriers from the source to the drain at 400 K for a 5 mu m long nanotube at 105 V m(-1) has been exhibited. The analytical results are in good agreement with the available experimental data. (c) 2010 American Institute of Physics.
Resumo:
We show, for sufficiently high temperatures and sufficiently weak majority-carrier binding energies, that the dominant radiative transition at an isoelectronic acceptor (donor) in p-type (n-type) material consists of the recombination of singly trapped minority carriers (bound by central-cell forces) with free majority carriers attracted by a Coulomb interaction. There are two reasons why the radiative recombination rate of the free-to-bound process is greater than the bound exciton process, which dominates at lower temperatures: (i) The population of free majority-carrier states greatly exceeds that of exciton states at higher temperatures, and (ii) the oscillator strength of the free-to-bound transition is greatly enhanced by the Coulomb attraction between the free carrier and the charged isoelectronic impurity. This enhancement is important for isoelectronic centers and is easily calculable from existing exciton models. We show that the free carrier attracted by a Coulomb interaction can be viewed as a continuum excited state of the bound exciton. When we apply the results of our calculations to the GaP(Zn, O) system, we find that the major part of the room-temperature luminescence from nearest-neighbor isoelectronic Zn-O complexes results from free-to-bound recombination and not exciton recombination as has been thought previously. Recent experiments on impulse excitation of luminescence in GaP(Zn, O) are reevaluated in the light of our calculations and are shown to be consistent with a strong free-to-bound transition. For deep isoelectronic centers with weakly bound majority carriers, we predict an overwhelming dominance of the free-to-bound process at 300°K.
Resumo:
In this work diketopyrrolopyrrole based copolymers (PDPP-BBT and TDPP-BBT) containing a donor-acceptor structural unit have been explored as organic Sensitizers for quasi-solid state dye Sensitized solar cells. Polymer-sensitized solar cells (PSSC) fabricated utilizing PDPP-BBT and TDPP-BBT as the active layer resulted in a typical power conversion efficiency of 1.43% and 2.41%, respectively. The power conversion efficiency of PSSCs based on TDPP-BBT With use of TiCl4-modified TiO2 photoanode was about 3.06%, attributed to the reduced back recombination reaction and more charge carriers in the external Circuit.
Resumo:
We present a simplified theory of the effective momentum mass (EMM) and ballistic current–voltage relationship in a degenerate two-folded highly asymmetric bilayer graphene nanoribbon. With an increase in the gap, the density-of-states in the lower set of subbands increases more than that of the upper set. This results in a phenomenological population inversion of carriers, which is reflected through a net negative differential conductance (NDC). It is found that with the increase of the ribbon width, the NDC also increases. The population inversion also signatures negative values of EMM above a certain ribbon-width for the lower set of subbands, which increases in a step-like manner with the applied longitudinal static bias. The well-known result for symmetric conditions has been obtained as a special case.
Resumo:
The first two members of the new TlSrn+1−xLnxCunO2n+3+δ (Ln=La, Pr, or Nd) series of superconducting cuprates possessing 1021 and 1122 type structures are described. The n=1 (1021) members with Tcs around 40 K have electrons or holes as the majority charge carriers depending on x. The n=2 (1122) cuprate (Ln=Pr or Nd) shows a Tc in the 80–90 K range.
Resumo:
Superconductivity in cuprates of the general formula TlCa1-xLnxSr2Cu2O7+ delta has been investigated as a function of Ln and x. Compositions with 0.25
Resumo:
The adsorption behaviour of an oxidised starch AP as well as that of calcium onto haematite have been studied both individually and together. While the adsorption density of starch AP onto haematite is enhanced in the presence of calcium, the adsorption of calcium onto haematite is not promoted by starch AP. Flocculation tests on haematite ore fines in the presence of starch AP and calcium chloride reveal that the sequence in which calcium and starch are added governs the settling rates and turbidity values. Zeta potential, viscosity and conductivity measurements, and calcium ion binding studies with starch AP indicate calcium-starch interactions. Possible mechanisms involved in such interactions with respect to haematite flocculation have been discussed.
Resumo:
The phyllite deposit of Degana, Rajasthan, containing tungsten values in the form of wolframite, (Fe, MnWO sub 4 ) finely dispersed in the quartz groundmass, has been quantitatively analysed to give 0.063% WO sub 3 , 6.66% Fe sub 2 O sub 3 , 14.30% Al sub 2 O sub 3 and 67.4% SiO sub 2 . The major gangue minerals identified are quartz, iron oxides and mica along with minor amounts of graphite, fluorite and sulphides. The amenability of the ore to gravity concentration, magnetic separation and a combination of the processes has been studied. A combination of tabling on --100 mesh ground ore and dry magnetic separation of the tabled concentrate gave a final concentrate containing 1.834% WO sub 3 with an overall recovery of only 4.6%. The complex mineralogy combined with fine dispersion of very low W values have contributed to the low recoveries and grades. Graph, photomicrographs. 10 ref.--AA
Resumo:
This paper presents an analysis of the effects of ambients-temperature and light intensity on the V-l characteristics of bipolar transistors under electrical breakdown. The analysis is based on the transportation and storage of majority carriers in the base region. It is shown that this analysis can explain the observed shift in the V-l characteristics to lower voltages with increase in either temperature or light intensity.
Resumo:
: Varistors prepared from ZnO with CaMnO3 perovskite as the only forming additive, exhibit voltage-limiting current-voltage characteristics with nonlinearity coefficient alpha up to 380 at low voltages of 1.8-12 V/mm. High nonlinearity is observed only with a suitable combination of processing parameters. The most crucial of them are (i) initial formulation of ceramics and (ii) the sintering temperature and conditions of post-sinter annealing. An electrically active intergranular phase is formed between ZnO grains with the composition ranging from Ca4Mn6Zn4O17 to Ca4Mn8Zn3O19, which creates the n-p-n heterojunctions. The low-voltage nonlinearity originates as a result of higher concentration of Mn(III)/Mn(IV) present at the grain boundary layer regions, being charge compensated by zinc vacancies. Under the external electric field, the barrier height is lowered due to the uphill diffusion of holes mediated by the acceptor states. Above the turn-on voltages, the unhindered transport of charge carriers between grains generates high current density associated with large nonlinearity.
Resumo:
We report transport and magnetic properties of a different class of highly conducting polyaniline, doped with boron trihalides BX3 (X=F, Cl, and Br). In order to understand the transport mechanism we analyze the temperature dependence of resistivity of a large number of samples, made by pelletizing doped polyaniline powder and by doping films of polyaniline. We find that the charge transport in this class of conducting polyaniline is driven by the charging-energy limited transport of charge carriers, in contrast to the quasi-one-dimensional variable range hopping conduction prevalent in conventional proton-doped polyaniline samples. Magnetic susceptibility provides further insight into the unusually high intrinsic conductivity behavior.
Resumo:
We present a simplified theoretical formulation of the thermoelectric power (TP) under magnetic quantization in quantum wells (QWs) of nonlinear optical materials on the basis of a newly formulated magneto-dispersion law. We consider the anisotropies in the effective electron masses and the spin-orbit constants within the framework of k.p formalism by incorporating the influence of the crystal field splitting. The corresponding results for III-V materials form a special case of our generalized analysis under certain limiting conditions. The TP in QWs of Bismuth, II-VI, IV-VI and stressed materials has been studied by formulating appropriate electron magneto-dispersion laws. We also address the fact that the TP exhibits composite oscillations with a varying quantizing magnetic field in QWs of n-Cd3As2, n-CdGeAs2, n-InSb, p-CdS, stressed InSb, PbTe and Bismuth. This reflects the combined signatures of magnetic and spatial quantizations of the carriers in such structures. The TP also decreases with increasing electron statistics and under the condition of non-degeneracy, all the results as derived in this paper get transformed into the well-known classical equation of TP and thus confirming the compatibility test. We have also suggested an experimental method of determining the elastic constants in such systems with arbitrary carrier energy spectra from the known value of the TP. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
A brief qualitative comparison is made of perovskite ABO sub 3 and layered perovskite ABO sub 3 and layered perovskite A sub 2 BO sub 4 oxides with special emphasis on the influence of geometrical factors on certain physico-chemical properties. The layered perovskite oxides are distinguished from three-dimensional oxides by a looser packing, frustration in three-dimensional interactions, more internal pressure on B--O bonds for small tolerance factors, and by different values of site-percolation thresholds. Their influence on electronic configurations of metal ions, stabilities and syntheses of compounds is discussed. The influence of increased anisotropy in layered oxides on localisation of charge carriers and in suppressing the onset of long-range ferromagnetic ordering is also discussed.
Resumo:
The current density-voltage (J-V) characteristics of poly(3-methylthiophene) devices show a negative differential resistance (NDR) at room temperature with a large peak to valley current ratio (similar to 507). This NDR can be tuned by two orders of magnitude by controlling the carrier density due to the variation of the space-charge region in the device. The temperature and scan rate dependent J-V measurements infer that the NDR is mainly driven by the trapping and de-trapping of carriers. The photo-generation of carriers is observed to reduce the NDR effect.