221 resultados para Optimal Linear Control
Resumo:
We consider a dense, ad hoc wireless network, confined to a small region. The wireless network is operated as a single cell, i.e., only one successful transmission is supported at a time. Data packets are sent between source-destination pairs by multihop relaying. We assume that nodes self-organize into a multihop network such that all hops are of length d meters, where d is a design parameter. There is a contention-based multiaccess scheme, and it is assumed that every node always has data to send, either originated from it or a transit packet (saturation assumption). In this scenario, we seek to maximize a measure of the transport capacity of the network (measured in bit-meters per second) over power controls (in a fading environment) and over the hop distance d, subject to an average power constraint. We first motivate that for a dense collection of nodes confined to a small region, single cell operation is efficient for single user decoding transceivers. Then, operating the dense ad hoc wireless network (described above) as a single cell, we study the hop length and power control that maximizes the transport capacity for a given network power constraint. More specifically, for a fading channel and for a fixed transmission time strategy (akin to the IEEE 802.11 TXOP), we find that there exists an intrinsic aggregate bit rate (Theta(opt) bits per second, depending on the contention mechanism and the channel fading characteristics) carried by the network, when operating at the optimal hop length and power control. The optimal transport capacity is of the form d(opt)((P) over bar (t)) x Theta(opt) with d(opt) scaling as (P) over bar (t) (1/eta), where (P) over bar (t) is the available time average transmit power and eta is the path loss exponent. Under certain conditions on the fading distribution, we then provide a simple characterization of the optimal operating point. Simulation results are provided comparing the performance of the optimal strategy derived here with some simple strategies for operating the network.
Resumo:
In this paper, we study the asymptotic behavior of an optimal control problem for the time-dependent Kirchhoff-Love plate whose middle surface has a very rough boundary. We identify the limit problem which is an optimal control problem for the limit equation with a different cost functional.
Resumo:
In this paper we consider a single discrete time queue with infinite buffer. The channel may experience fading. The transmission rate is a linear function of power used for transmission. In this scenario we explicitly obtain power control policies which minimize mean power and/or mean delay. There may also be peak power constraint.
Resumo:
Information spreading in a population can be modeled as an epidemic. Campaigners (e.g., election campaign managers, companies marketing products or movies) are interested in spreading a message by a given deadline, using limited resources. In this paper, we formulate the above situation as an optimal control problem and the solution (using Pontryagin's Maximum Principle) prescribes an optimal resource allocation over the time of the campaign. We consider two different scenarios-in the first, the campaigner can adjust a direct control (over time) which allows her to recruit individuals from the population (at some cost) to act as spreaders for the Susceptible-Infected-Susceptible (SIS) epidemic model. In the second case, we allow the campaigner to adjust the effective spreading rate by incentivizing the infected in the Susceptible-Infected-Recovered (SIR) model, in addition to the direct recruitment. We consider time varying information spreading rate in our formulation to model the changing interest level of individuals in the campaign, as the deadline is reached. In both the cases, we show the existence of a solution and its uniqueness for sufficiently small campaign deadlines. For the fixed spreading rate, we show the effectiveness of the optimal control strategy against the constant control strategy, a heuristic control strategy and no control. We show the sensitivity of the optimal control to the spreading rate profile when it is time varying. (C) 2014 Elsevier Inc. All rights reserved.
Resumo:
Our work is motivated by impromptu (or ``as-you-go'') deployment of wireless relay nodes along a path, a need that arises in many situations. In this paper, the path is modeled as starting at the origin (where there is the data sink, e.g., the control center), and evolving randomly over a lattice in the positive quadrant. A person walks along the path deploying relay nodes as he goes. At each step, the path can, randomly, either continue in the same direction or take a turn, or come to an end, at which point a data source (e.g., a sensor) has to be placed, that will send packets to the data sink. A decision has to be made at each step whether or not to place a wireless relay node. Assuming that the packet generation rate by the source is very low, and simple link-by-link scheduling, we consider the problem of sequential relay placement so as to minimize the expectation of an end-to-end cost metric (a linear combination of the sum of convex hop costs and the number of relays placed). This impromptu relay placement problem is formulated as a total cost Markov decision process. First, we derive the optimal policy in terms of an optimal placement set and show that this set is characterized by a boundary (with respect to the position of the last placed relay) beyond which it is optimal to place the next relay. Next, based on a simpler one-step-look-ahead characterization of the optimal policy, we propose an algorithm which is proved to converge to the optimal placement set in a finite number of steps and which is faster than value iteration. We show by simulations that the distance threshold based heuristic, usually assumed in the literature, is close to the optimal, provided that the threshold distance is carefully chosen. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
The sensitivity of combustion phasing and combustion descriptors to ignition timing, load and mixture quality on fuelling a multi-cylinder natural gas engine with bio-derived H-2 and CO rich syngas is addressed. While the descriptors for conventional fuels are well established and are in use for closed loop engine control, presence of H-2 in syngas potentially alters the mixture properties and hence combustion phasing, necessitating the current study. The ability of the descriptors to predict abnormal combustion, hitherto missing in the literature, is also addressed. Results from experiments using multi-cylinder engines and numerical studies using zero dimensional Wiebe function based simulation models are reported. For syngas with 20% H-2 and CO and 2% CH4 (producer gas), an ignition retard of 5 +/- 1 degrees was required compared to natural gas ignition timing to achieve peak load of 72.8 kWe. It is found that, for syngas, whose flammability limits are 0.42-1.93, the optimal engine operation was at an equivalence ratio of 1.12. The same methodology is extended to a two cylinder engine towards addressing the influence of syngas composition, especially H-2 fraction (varying from 13% to 37%), on the combustion phasing. The study confirms the utility of pressure trace derived combustion descriptors, except for the pressure trace first derivative, in describing the MBT operating condition of the engine when fuelled with an alternative fuel. Both experiments and analysis suggest most of the combustion descriptors to be independent of the engine load and mixture quality. A near linear relationship with ignition angle is observed. The general trend(s) of the combustion descriptors for syngas fuelled operation are similar to those of conventional fuels; the differences in sensitivity of the descriptors for syngas fuelled engine operation requires re-calibration of control logic for MBT conditions. Copyright (C) 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
Resumo:
Adapting the power of secondary users (SUs) while adhering to constraints on the interference caused to primary receivers (PRxs) is a critical issue in underlay cognitive radio (CR). This adaptation is driven by the interference and transmit power constraints imposed on the secondary transmitter (STx). Its performance also depends on the quality of channel state information (CSI) available at the STx of the links from the STx to the secondary receiver and to the PRxs. For a system in which an STx is subject to an average interference constraint or an interference outage probability constraint at each of the PRxs, we derive novel symbol error probability (SEP)-optimal, practically motivated binary transmit power control policies. As a reference, we also present the corresponding SEP-optimal continuous transmit power control policies for one PRx. We then analyze the robustness of the optimal policies when the STx knows noisy channel estimates of the links between the SU and the PRxs. Altogether, our work develops a holistic understanding of the critical role played by different transmit and interference constraints in driving power control in underlay CR and the impact of CSI on its performance.
Resumo:
In this paper, a C-0 interior penalty method has been proposed and analyzed for distributed optimal control problems governed by the biharmonic operator. The state and adjoint variables are discretized using continuous piecewise quadratic finite elements while the control variable is discretized using piecewise constant approximations. A priori and a posteriori error estimates are derived for the state, adjoint and control variables under minimal regularity assumptions. Numerical results justify the theoretical results obtained. The a posteriori error estimators are useful in adaptive finite element approximation and the numerical results indicate that the sharp error estimators work efficiently in guiding the mesh refinement. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
The recently developed reference-command tracking version of model predictive static programming (MPSP) is successfully applied to a single-stage closed grinding mill circuit. MPSP is an innovative optimal control technique that combines the philosophies of model predictive control (MPC) and approximate dynamic programming. The performance of the proposed MPSP control technique, which can be viewed as a `new paradigm' under the nonlinear MPC philosophy, is compared to the performance of a standard nonlinear MPC technique applied to the same plant for the same conditions. Results show that the MPSP control technique is more than capable of tracking the desired set-point in the presence of model-plant mismatch, disturbances and measurement noise. The performance of MPSP and nonlinear MPC compare very well, with definite advantages offered by MPSP. The computational speed of MPSP is increased through a sequence of innovations such as the conversion of the dynamic optimization problem to a low-dimensional static optimization problem, the recursive computation of sensitivity matrices and using a closed form expression to update the control. To alleviate the burden on the optimization procedure in standard MPC, the control horizon is normally restricted. However, in the MPSP technique the control horizon is extended to the prediction horizon with a minor increase in the computational time. Furthermore, the MPSP technique generally takes only a couple of iterations to converge, even when input constraints are applied. Therefore, MPSP can be regarded as a potential candidate for online applications of the nonlinear MPC philosophy to real-world industrial process plants. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Understanding the growth behavior of microorganisms using modeling and optimization techniques is an active area of research in the fields of biochemical engineering and systems biology. In this paper, we propose a general modeling framework, based on Monad model, to model the growth of microorganisms. Utilizing the general framework, we formulate an optimal control problem with the objective of maximizing a long-term cellular goal and solve it analytically under various constraints for the growth of microorganisms in a two substrate batch environment. We investigate the relation between long term and short term cellular goals and show that the objective of maximizing cellular concentration at a fixed final time is equivalent to maximization of instantaneous growth rate. We then establish the mathematical connection between the generalized framework and optimal and cybernetic modeling frameworks and derive generalized governing dynamic equations for optimal and cybernetic models. We finally illustrate the influence of various constraints in the cybernetic modeling framework on the optimal growth behavior of microorganisms by solving several dynamic optimization problems using genetic algorithms. (C) 2014 Published by Elsevier Inc.
Resumo:
A neural-network-aided nonlinear dynamic inversion-based hybrid technique of model reference adaptive control flight-control system design is presented in this paper. Here, the gains of the nonlinear dynamic inversion-based flight-control system are dynamically selected in such a manner that the resulting controller mimics a single network, adaptive control, optimal nonlinear controller for state regulation. Traditional model reference adaptive control methods use a linearized reference model, and the presented control design method employs a nonlinear reference model to compute the nonlinear dynamic inversion gains. This innovation of designing the gain elements after synthesizing the single network adaptive controller maintains the advantages that an optimal controller offers, yet it retains a simple closed-form control expression in state feedback form, which can easily be modified for tracking problems without demanding any a priori knowledge of the reference signals. The strength of the technique is demonstrated by considering the longitudinal motion of a nonlinear aircraft system. An extended single network adaptive control/nonlinear dynamic inversion adaptive control design architecture is also presented, which adapts online to three failure conditions, namely, a thrust failure, an elevator failure, and an inaccuracy in the estimation of C-M alpha. Simulation results demonstrate that the presented adaptive flight controller generates a near-optimal response when compared to a traditional nonlinear dynamic inversion controller.
Resumo:
In this article, an abstract framework for the error analysis of discontinuous Galerkin methods for control constrained optimal control problems is developed. The analysis establishes the best approximation result from a priori analysis point of view and delivers a reliable and efficient a posteriori error estimator. The results are applicable to a variety of problems just under the minimal regularity possessed by the well-posedness of the problem. Subsequently, the applications of C-0 interior penalty methods for a boundary control problem as well as a distributed control problem governed by the biharmonic equation subject to simply supported boundary conditions are discussed through the abstract analysis. Numerical experiments illustrate the theoretical findings.
Resumo:
We study the optimal control problem of maximizing the spread of an information epidemic on a social network. Information propagation is modeled as a susceptible-infected (SI) process, and the campaign budget is fixed. Direct recruitment and word-of-mouth incentives are the two strategies to accelerate information spreading (controls). We allow for multiple controls depending on the degree of the nodes/individuals. The solution optimally allocates the scarce resource over the campaign duration and the degree class groups. We study the impact of the degree distribution of the network on the controls and present results for Erdos-Renyi and scale-free networks. Results show that more resource is allocated to high-degree nodes in the case of scale-free networks, but medium-degree nodes in the case of Erdos-Renyi networks. We study the effects of various model parameters on the optimal strategy and quantify the improvement offered by the optimal strategy over the static and bang-bang control strategies. The effect of the time-varying spreading rate on the controls is explored as the interest level of the population in the subject of the campaign may change over time. We show the existence of a solution to the formulated optimal control problem, which has nonlinear isoperimetric constraints, using novel techniques that is general and can be used in other similar optimal control problems. This work may be of interest to political, social awareness, or crowdfunding campaigners and product marketing managers, and with some modifications may be used for mitigating biological epidemics.
Resumo:
In this paper, we propose a new load distribution strategy called `send-and-receive' for scheduling divisible loads, in a linear network of processors with communication delay. This strategy is designed to optimally utilize the network resources and thereby minimizes the processing time of entire processing load. A closed-form expression for optimal size of load fractions and processing time are derived when the processing load originates at processor located in boundary and interior of the network. A condition on processor and link speed is also derived to ensure that the processors are continuously engaged in load distributions. This paper also presents a parallel implementation of `digital watermarking problem' on a personal computer-based Pentium Linear Network (PLN) topology. Experiments are carried out to study the performance of the proposed strategy and results are compared with other strategies found in literature.
Resumo:
The ergodic or long-run average cost control problem for a partially observed finite-state Markov chain is studied via the associated fully observed separated control problem for the nonlinear filter. Dynamic programming equations for the latter are derived, leading to existence and characterization of optimal stationary policies.