195 resultados para OXYGEN NONSTOICHIOMETRY


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The catalytic activity of cobalt phthalocyanine monomer and some of its polymeric derivatives towards the electroreduction of molecular oxygen in salt and alkaline solutions is examined. It is found that most of these complexes exhibit a higher catalytic activity than the cobalt phthalocyanine monomer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Core-level spectroscopic studies suggest that cuprates nominally supposed to contain Cu3+ions are likely to have the excess positive charge on oxygen instead, giving rise to O-type species (oxygen holes)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The oxygen potentials corresponding to fayalite-quartz-iron (FQI) and fayalite-quartz-magnetite (FQM) equilibria have been determined using solid-state galvanic cells: Pt,Fe + Fe2SiO4 + SiO2/(Y2O3)ZrO2/Fe + \r"FeO,\l"Pt and Pt, Fe3O4 + Fe2SiO4 + SiO2/(Y2O3)ZrO2/Ni + NiO, Pt in the temperature ranges 900 to 1400 K and 1080 to 1340 K, respectively. The cells are written such that the right-hand electrodes are positive. Silica used in this study had the quartz structure. The emf of both cells was found to be reversible and to vary linearly with temperature. From the emf, Gibbs energy changes were deduced for the reactions: 0.106Fe (s) + 2Fe0.947O (r.s.) + SiO2 (qz) → Fe2SiO4 (ol) δG‡= -39,140+ 15.59T(± 150) J mol-1 and 3Fe2SiO4 (ol) + O2 (g) → 2Fe3O4 (sp) + 3SiO2 (qz) δG‡ = -471,750 + 160.06 T±} 1100) J mol-1 The “third-law≓ analysis of fayalite-quartz-wustite and fayalite-quartz-magnetite equilibria gives value for δH‡298 as -35.22 (±0.1) and -528.10 (±0.1) kJ mol-1, respectively, independent of temperature. The Gibbs energy of formation of the spinel form of Fe2SiO4 is derived by com-bining the present results on FQI equilibrium with the high-pressure data on olivine to spinel transformation of Fe2SiO4.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A comparative neutron diffraction study of Bi2CaSr2Cu2O8+δ, Bi2Ca2SrCu2O8+δ and Bi2Ca1.5Y0.5SrCu2O8+δ has not only shown the presence of considerable oxygen excess in the Bi layers, but also evidence for oxygen pairing giving rise to O1−2 or O2−2 type species, probably the latter. The proportion of the paired species increases when Y partly replaces Ca. Furthermore, the Tc decreases with an increase in paired species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electrochemical reduction of oxygen has been studied on gold, boron-doped diamond (BDD) and glassy carbon (GC) electrodes in a ternary eutectic mixture of acetamide (CH3CONH2), urea (NH2CONH2) and ammonium nitrate (NH4NO3). Cyclic voltammetry (CV), differential pulse voltammetry (DPV), chronoamperometry and rotating disk electrode (RDE) voltammetry techniques have been employed to follow oxygen reduction reaction (ORR). The mechanism for the electrochemical reduction of oxygen on polycrystalline gold involves 2-step. 2-electron pathways of O-2 to H2O2 and further reduction of H2O2 to H2O. The first 2-electron reduction of O-2 to H2O2 passes through superoxide intermediate by 1-electron reduction of oxygen. Kinetic results suggest that the initial 1-electron reduction of oxygen to HO2 is the rate-determining step of ORR on gold surfaces. The chronoamperometric and ROE studies show a potential dependent change in the number of electrons on gold electrode. The oxygen reduction reaction on boron-doped diamond (BOO) seems to proceed via a direct 4-electron process. The reduction of oxygen on the glassy carbon (GC) electrode is a single step, irreversible, diffusion limited 2-electron reduction process to peroxide. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Superconductivity in LnBa2Cu3O7 − δ with Ln = Nd, Eu, Gdand Dy has been investigated as a function of δ, closely following the accompanying changes in crystal structure. Orthorhombic GdBa2Cu3O7 − δ and DyBa2Cu3O7 − δ show a Tc of ≈ 90 K up to δ = 0.2 and a lower Tc plateau (40–50 K) in the δ range 02 to 0.4, similar to that found in YBa2Cu3O7 − δ. The orthorhombic structure II in the lower Tc regions is different from the structure I in the 90 K Tc (low δ) region. The unit cell parameters of the orthorhombic I structure in the high Tc region bear the relationship of a a ≠ b not, vert, similar c/3. This relationship is not seen in the low Tc plateau. The low Tc plateau region does not distinctly manifest itself in NdBa2Cu3O7 − δ just as in LaBa2Cu3O7 − δ.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Core-level spectroscopic studies show the presence of holes on oxygen in LaNiO3 and LiNiO2 Nickel in these oxides seems to be essentially in the 2+ state instead of the 3+ state-where it would formally be expected to be on the basis of the stoichiometry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Statistical methods for optimizing the morphology of oxide-based, bifunctional oxygen electrodes for use in rechargeable metal/air batteries are examined with regard to binder composition, compaction time, and compaction load. Results show that LaNiO3 with PTFE binder in a nickel mesh envelope provides a satisfactory electrode.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

X.p.s. studies on the adsorption of oxygen on a barium-covered Pb surface have shown the presence of two distinct types of oxygen species: oxidic, O2–, and the peroxo-like O2–2(ads), and the surface has been identified as a composite of PbO and BaPbO3. On a barium pre-covered surface, the sticking probability of oxygen on Pb is increased. The O2–(ads) species preferentially reacts with HCl forming PbCl2(ads)via proton abstraction, whereas O2–2(ads) is not reactive with HCl vapour. On the Pb surface, the PbCl2 overlayer reacts with excess HCl, forming a volatile compound believed to be Pb(ClHCl)2, while in the presence of coadsorbed barium, the stability of PbCl2 is increased and the activation energy for the reaction: PbCl2(ads)+ 2HCl(g) Pb(ClHCl)2(g) is increased. Stronger intermetallic interaction is suggested to be the reason for higher PbCl2 stability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We combine first-principles calculations with EXAFS studies to investigate the origin of high oxygen storage capacity in ceria-zirconia solid solution, prepared by solution combustion method. We find that nanocrystalline Ce0.5Zr0.5O2 can be reduced to Ce0.5Zr0.5O1.57 by H-2 upto 850 degrees C with an OSC of 65 cc/gm which is extremely high. Calculated local atomic-scale structure reveals the presence of long and short bonds resulting in four-fold coordination of the cations, confirmed by the EXAFS studies. Bond valence analysis of the microscopic structure and energetics is used to evaluate the strength of binding of different oxide ions and vacancies. We find the presence of strongly and weakly bound oxygens, of which the latter are responsible for the higher oxygen storage capacity in the mixed oxides than in the pure CeO2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thermogravimetric curves of the superconducting samples (0.0 ≤ δ left angle bracket0.5) of YBa2Cu3O7−δ are shown to be characteristically different from those of the non-superconducting samples (δreverse similar, equals0.5–1.0). The variation of Tc (from resistivity measurements) with δ confirms for a change from Image to Image Bands found in bright or dark field electron micrographs are shown to arise for different orientations of the [CuO2]∞ planes, causing oxygen enrichment in the boundaries. A new defect with missing Y-rows is found in the images of Y1−xBa2Cu3O7.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oxygen storage/release (OSC) capacity is an important feature common to all three-way catalysts to combat harmful exhaust emissions. To understand the mechanism of improved OSC for doped CeO2, we undertook the structural investigation by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), H-2-TPR (temperature-programmed hydrogen reduction) and density functional theoretical (DFT) calculations of transition-metal-, noble-metal-, and rare-earth (RE)-ion-substituted ceria. In this report, we present the relationship between the OSC and structural changes induced by the dopant ion in CeO2. Transition metal and noble metal ion substitution in ceria greatly enhances the reducibility of Ce1-xMxO2-delta (M = Mn, Fe, Co, Ni, Cu, Pd, Pt, Ru), whereas rare-earth-ion-substituted Ce(1-x)A(x)O(2-delta) (A = La, Y) have very little effect in improving the OSC. Our simulated optimized structure shows deviation in cation oxygen bond length from ideal bond length of 2.34 angstrom (for CeO2). For example, our theoretical calculation for Ce28Mn4O62 structure shows that Mn-O bonds are in 4 + 2 coordination with average bond lengths of 2.0 and 3.06 angstrom respectively. Although the four short Mn-O bond lengths spans the bond distance region of Mn2O3, the other two Mn-O bonds are moved to longer distances. The dopant transition and noble metal ions also affects Ce coordination shell and results in the formation of longer Ce-O bonds as well. Thus longer cation oxygen bonds for both dopant and host ions results in enhanced synergistic reduction of the solid solution. With Pd ion substitution in Ce1-xMxO2-delta (M = Mn, Fe, Co, Ni, Cu) further enhancement in OSC is observed in H-2-TPR. This effect is reflected in our model calculations by the presence of still longer bonds compared to the model without Pd ion doping. The synergistic effect is therefore due to enhanced reducibility of both dopant and host ion induced due to structural distortion of fluorite lattice in presence of dopant ion. For RE ions (RE = Y, La), our calculations show very little deviation of bonds lengths from ideal fluorite structure. The absence of longer Y-O/La-O and Ce-O bonds make the structure much less susceptible to reduction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hemin catalyses the oxidation of dithiothreitol. One mole of oxygen is consumed for every 2 moles of dithiothreitol oxidized and the product is shown by spectral studies to be the intramolecular disulphide. The reaction shows a specificity for dithiol and for free heme moieties. Hemin molecules exhibit cooperativity in oxygen reduction. Oxygen radicals do not seem to be involved. H2O2 is not required for this oxidation of dithiothreitol and does not appear to be an intermediate in the reduction of O2 to H2O. However, an independent minor reaction involving a 2-electron transfer with the formation of H2O2 also occurs. These studies on the hemin-catalyzed oxidation of dithiothreitol provide a chemical model for a direct 4-electron reduction of O2 to H2O.