404 resultados para ORDER-PARAMETER


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Equivalence of certain classes of second-order non-linear distributed parameter systems and corresponding linear third-order systems is established through a differential transformation technique. As linear systems are amenable to analysis through existing techniques, this study is expected to offer a method of tackling certain classes of non-linear problems which may otherwise prove to be formidable in nature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We extend current research in the area of 'sensorless' control of induction motors by presenting two observers based on first- and second-order sliding mode control theories for the simultaneous estimation of flux and speed. We base the observers on the stator-flux model of the motor instead of the usual rotor-flux model mainly because of the uncertain rotor resistance that plays a significant role in the latter. By designing the observers as if they are sliding mode controllers, we lend the properties of parameter insensitive closed-loop dynamics and finite time convergence to the stator flux and speed estimation schemes. We also present simulation and experimental results to validate the operation of the observers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A study of the chain conformation in solutions of polyphenylacetylene and poly(2-octyne) has been performed. The two polymers differ in many ways : polyphenylacetylene gives a red solution while poly(2-octyne) is transparent and, a marked difference on the chain rigidity is observed : the statistical length are 45 Å and 135 Å respectively. From the study of these two systems, one deduces that curvature fluctuations play a minor role on the π electrons localization, and that the torsion between monomer units is the pertinent parameter to understand the chain conformation and the π electrons localization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Predictions of two popular closed-form models for unsaturated hydraulic conductivity (K) are compared with in situ measurements made in a sandy loam field soil. Whereas the Van Genuchten model estimates were very close to field measured values, the Brooks-Corey model predictions were higher by about one order of magnitude in the wetter range. Estimation of parameters of the Van Genuchten soil moisture characteristic (SMC) equation, however, involves the use of non-linear regression techniques. The Brooks-Corey SMC equation has the advantage of being amenable to application of linear regression techniques for estimation of its parameters from retention data. A conversion technique, whereby known Brooks-Corey model parameters may be converted into Van Genuchten model parameters, is formulated. The proposed conversion algorithm may be used to obtain the parameters of the preferred Van Genuchten model from in situ retention data, without the use of non-linear regression techniques.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report the Brownian dynamics simulation results on the translational and bond-angle-orientational correlations for charged colloidal binary suspensions as the interparticle interactions are increased to form a crystalline (for a volume fraction phi = 0.2) or a glassy (phi = 0.3) state. The translational order is quantified in terms of the two- and four-point density autocorrelation functions whose comparisons show that there is no growing correlation length near the glass transition. The nearest-neighbor orientational order is determined in terms of the quadratic rotational invariant Q(l) and the bond-orientational correlation functions g(l)(t). The l dependence of Q(l) indicates that icosahedral (l = 6) order predominates at the cost of the cubic order (l = 4) near the glass as well as the crystal transition. The density and orientational correlation functions for a supercooled liquid freezing towards a glass fit well to the streched-exponential form exp[-(t/tau)(beta)]. The average relaxation times extracted from the fitted stretched-exponential functions as a function of effective temperatures T* obey the Arrhenius law for liquids freezing to a crystal whereas these obey the Vogel-Tamman-Fulcher law exp[AT(0)*/(T* - T-0*)] for supercooled Liquids tending towards a glassy state. The value of the parameter A suggests that the colloidal suspensions are ''fragile'' glass formers like the organic and molecular liquids.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The singularity structure of the solutions of a general third-order system, with polynomial right-hand sides of degree less than or equal to two, is studied about a movable singular point, An algorithm for transforming the given third-order system to a third-order Briot-Bouquet system is presented, The dominant behavior of a solution of the given system near a movable singularity is used to construct a transformation that changes the given system directly to a third-order Briot-Bouquet system. The results of Horn for the third-order Briot-Bouquet system are exploited to give the complete form of the series solutions of the given third-order system; convergence of these series in a deleted neighborhood of the singularity is ensured, This algorithm is used to study the singularity structure of the solutions of the Lorenz system, the Rikitake system, the three-wave interaction problem, the Rabinovich system, the Lotka-Volterra system, and the May-Leonard system for different sets of parameter values. The proposed approach goes far beyond the ARS algorithm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this letter, we analyze the Diversity Multiplexinggain Tradeoff (DMT) performance of a training-based reciprocal Single Input Multiple Output (SIMO) system. Assuming Channel State Information (CSI) is available at the Receiver (CSIR), we propose a channel-dependent power-controlled Reverse Channel Training (RCT) scheme that enables the transmitter to directly estimate the power control parameter to be used for the forwardlink data transmission. We show that, with an RCT power of (P) over bar (gamma), gamma > 0 and a forward data transmission power of (P) over bar, our proposed scheme achieves an infinite diversity order for 0 <= g(m) < L-c-L-B,L-tau/L-c min(gamma, 1) and r > 2, where g(m) is the multiplexing gain, L-c is the channel coherence time, L-B,L-tau is the RCT duration and r is the number of receive antennas. We also derive an upper bound on the outage probability and show that it goes to zero asymptotically as exp(-(P) over bar (E)), where E (sic) (gamma - g(m)L(c)/L-c-L-B,L-tau), at high (P) over bar. Thus, the proposed scheme achieves a significantly better DMT performance compared to the finite diversity order achieved by channel-agnostic, fixed-power RCT schemes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we consider a singularly perturbed boundary-value problem for fourth-order ordinary differential equation (ODE) whose highest-order derivative is multiplied by a small perturbation parameter. To solve this ODE, we transform the differential equation into a coupled system of two singularly perturbed ODEs. The classical central difference scheme is used to discretize the system of ODEs on a nonuniform mesh which is generated by equidistribution of a positive monitor function. We have shown that the proposed technique provides first-order accuracy independent of the perturbation parameter. Numerical experiments are provided to validate the theoretical results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A finite difference method for a time-dependent singularly perturbed convection-diffusion-reaction problem involving two small parameters in one space dimension is considered. We use the classical implicit Euler method for time discretization and upwind scheme on the Shishkin-Bakhvalov mesh for spatial discretization. The method is analysed for convergence and is shown to be uniform with respect to both the perturbation parameters. The use of the Shishkin-Bakhvalov mesh gives first-order convergence unlike the Shishkin mesh where convergence is deteriorated due to the presence of a logarithmic factor. Numerical results are presented to validate the theoretical estimates obtained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the use of tensor analysis and the method of singular surfaces, an infinite system of equations can be derived to study the propagation of curved shocks of arbitrary strength in gas dynamics. The first three of these have been explicitly given here. This system is further reduced to one involving scalars only. The choice of dependent variables in the infinite system is quite important, it leads to coefficients free from singularities for all values of the shock strength.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The recently discovered twist phase is studied in the context of the full ten-parameter family of partially coherent general anisotropic Gaussian Schell-model beams. It is shown that the nonnegativity requirement on the cross-spectral density of the beam demands that the strength of the twist phase be bounded from above by the inverse of the transverse coherence area of the beam. The twist phase as a two-point function is shown to have the structure of the generalized Huygens kernel or Green's function of a first-order system. The ray-transfer matrix of this system is exhibited. Wolf-type coherent-mode decomposition of the twist phase is carried out. Imposition of the twist phase on an otherwise untwisted beam is shown to result in a linear transformation in the ray phase space of the Wigner distribution. Though this transformation preserves the four-dimensional phase-space volume, it is not symplectic and hence it can, when impressed on a Wigner distribution, push it out of the convex set of all bona fide Wigner distributions unless the original Wigner distribution was sufficiently deep into the interior of the set.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hydrodynamic modes and the velocity autocorrelation functions for a dilute sheared inelastic fluid are analyzed using an expansion in the parameter epsilon=(1-e)(1/2), where e is the coefficient of restitution. It is shown that the hydrodynamic modes for a sheared inelastic fluid are very different from those for an elastic fluid in the long-wave limit, since energy is not a conserved variable when the wavelength of perturbations is larger than the ``conduction length.'' In an inelastic fluid under shear, there are three coupled modes, the mass and the momenta in the plane of shear, which have a decay rate proportional to k(2/3) in the limit k -> 0, if the wave vector has a component along the flow direction. When the wave vector is aligned along the gradient-vorticity plane, we find that the scaling of the growth rate is similar to that for an elastic fluid. The Fourier transforms of the velocity autocorrelation functions are calculated for a steady shear flow correct to leading order in an expansion in epsilon. The time dependence of the autocorrelation function in the long-time limit is obtained by estimating the integral of the Fourier transform over wave number space. It is found that the autocorrelation functions for the velocity in the flow and gradient directions decay proportional to t(-5/2) in two dimensions and t(-15/4) in three dimensions. In the vorticity direction, the decay of the autocorrelation function is proportional to t(-3) in two dimensions and t(-7/2) in three dimensions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We apply the method of multiple scales (MMS) to a well known model of regenerative cutting vibrations in the large delay regime. By ``large'' we mean the delay is much larger than the time scale of typical cutting tool oscillations. The MMS upto second order for such systems has been developed recently, and is applied here to study tool dynamics in the large delay regime. The second order analysis is found to be much more accurate than first order analysis. Numerical integration of the MMS slow flow is much faster than for the original equation, yet shows excellent accuracy. The main advantage of the present analysis is that infinite dimensional dynamics is retained in the slow flow, while the more usual center manifold reduction gives a planar phase space. Lower-dimensional dynamical features, such as Hopf bifurcations and families of periodic solutions, are also captured by the MMS. Finally, the strong sensitivity of the dynamics to small changes in parameter values is seen clearly.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The random early detection (RED) technique has seen a lot of research over the years. However, the functional relationship between RED performance and its parameters viz,, queue weight (omega(q)), marking probability (max(p)), minimum threshold (min(th)) and maximum threshold (max(th)) is not analytically availa ble. In this paper, we formulate a probabilistic constrained optimization problem by assuming a nonlinear relationship between the RED average queue length and its parameters. This problem involves all the RED parameters as the variables of the optimization problem. We use the barrier and the penalty function approaches for its Solution. However (as above), the exact functional relationship between the barrier and penalty objective functions and the optimization variable is not known, but noisy samples of these are available for different parameter values. Thus, for obtaining the gradient and Hessian of the objective, we use certain recently developed simultaneous perturbation stochastic approximation (SPSA) based estimates of these. We propose two four-timescale stochastic approximation algorithms based oil certain modified second-order SPSA updates for finding the optimum RED parameters. We present the results of detailed simulation experiments conducted over different network topologies and network/traffic conditions/settings, comparing the performance of Our algorithms with variants of RED and a few other well known adaptive queue management (AQM) techniques discussed in the literature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider some non-autonomous second order Cauchy problems of the form u + B(t)(u) over dot + A(t)u = f (t is an element of [0, T]), u(0) = (u) over dot(0) = 0. We assume that the first order problem (u) over dot + B(t)u = f (t is an element of [0, T]), u(0) = 0, has L-p-maximal regularity. Then we establish L-p-maximal regularity of the second order problem in situations when the domains of B(t(1)) and A(t(2)) always coincide, or when A(t) = kappa B(t).