190 resultados para O outro pé da sereia
Resumo:
Inhibitors of heme biosynthesis such as CoCl2, 3-amino-1,2,4-triazole, and thioacetamide block the 3-methylcholanthrene-mediated induction of cytochrome P-450 (c + d) messenger RNAs and their transcription in rat liver. This effect is specific, since the messenger RNA levels for albumin and glutathione transferase (Ya + Yc) and their transcription are not significantly influenced under conditions of heme depletion. Exogenous administration of heme at very low doses (50 μg/100 g body wt) is able to completely counteract the effects of the heme biosynthetic inhibitors on cytochrome P-450 (c + d) messenger RNA levels and their transcription. This constitutes a direct proof for the role of heme as a positive regulator of cytochrome P-450 gene transcription.
Resumo:
Administration of 3-methylcholanthrene (MC) to rats results in a striking increase in the transcription of cytochrome P-450 (c+d) messenger RNA with isolated nuclei, which is blocked by the simultaneous administration of cobalt chloride, an inhibitor of heme biosynthesis. Transcription of cytochrome P-450 (c+d) mRNAs with nuclei isolated from MC treated rats shows a linear increase with time of incubation, whereas it shows a progressive decrease with incubation time in the case of nuclei isolated from MC+CoCl2 treated rats. Addition of heme in vitro (10−6M) to the latter nuclei results in a significant counteraction of the decreased cytochrome P-450 (c+d) mRNA transcription. The inhibition in transcription rates observed in MC+CoCl2 treated rat liver nuclei is more pronounced with the seventh exon probe than with the second exon probe. Once again, in vitro heme addition can counteract the inhibition observed with both the probes. Since run off transcription with isolated nuclei represents essentially elongation of the initiated transcripts, the data obtained can be interpreted on the basis that heme regulates cytochrome P-450 gene transcription elongation.
Resumo:
The kinetics of the vapor phase oxidation of p-xylene over ferric molybdate catalyst were studied in an isothermal, differential, tubular flow reactor in the temperature range of 360 to 420° C. The major product obtained was p-tolualdehyde with small amounts of maleic anhydride and p-toluic acid. No terephthalic acid or CO2 were observed. The reaction rate data collected fit the redox model given by Equation 1. The values of activation energies Ex, Eo and frequency factors Ax, Ao obtained are 72, 63 kJ/mol and 0.64, 2.89 m3/kg catalyst s respectively. The reaction mechanism was established by studying the oxidation of p-tolualdehyde, toluic and terephthalic acids. It is concluded that the reaction follows a parallel-consecutive scheme. On a étudié la cinétique de l'oxydation, en phase gazeuse, du para-xylène sur un catalyseur consistant en molybdate ferrique; cette oxydation s'est faite dans un réacteur à écoulement tubulaire, isothermique et différentiel, dans une échelle de températures comprises entre 360°C et 420°C. Le produit principal obtenu a été le para-tolualdéhyde; on a aussi trouvé de faibles quantités d'anhydride maléique et d'acide para-toluique, mais on n'a pas noté la présence d'acide téréphtalique ni d'anhydride carbonique (CO2). Les résultats obtenus en ce qui a trait à la vitesse de réaction concordent bien avec les données du modèle redox indiquées par l'équation 1. Les valeurs des énergies d'activation Ex et Eo ainsi que des facteurs de fréquence Ax et Ao obtenus sont respectivement 72 et 63 kilojoules/mol. et 0.64 × 103 et 2.89 m3/kg de catalyseur. On a établi le mécanisme de la réaction en étudiant l'oxydation du para-tolualdéhyde et des acides toluique et téréphtalique. On conclut que la réaction se fait d'une manière parallèle et consécutive.
Resumo:
The suggestion that a rapidly sedimenting rough endoplasmic reticulum fraction in close association with mitochondria, is the preferred site of cytochrome P-450 synthesis has been examined. The rate of cytochrome P-450 synthesis in the different subcellular fractions has been evaluated Image , using the immunoprecipitation technique. The results indicate that the conventional microsomal fraction (100,000 X g sediment) is the major site of cytochrome P-450 synthesis and that the rapidly sedimenting rough endoplasmic reticulum fraction associated with mitochondria is not a preferred site for the hemoprotein synthesis.
Resumo:
Adenylosuccinate synthetase catalyzes a reversible reaction utilizing IMP, GTP and aspartate in the presence of Mg2+ to form adenylosuccinate, GDP and inorganic phosphate. Comparison of similarly liganded complexes of Plasmodium falciparum, mouse and Escherichia coil AdSS reveals H-bonding interactions involving nonconserved catalytic loop residues (Asn429, Lys62 and Thr307) that are unique to the parasite enzyme. Site-directed mutagenesis has been used to examine the role of these interactions in catalysis and structural organization of P. falciparum adenylosuccinate synthetase (PfAdSS). Mutation of Asn429 to Val, Lys62 to Leu and Thr307 to Val resulted in an increase in K-m values for IMP, GTP and aspartate, respectively along with a 5 fold drop in the k(cat) value for N429V mutant suggesting the role of these residues in ligand binding and/or catalysis. We have earlier shown that the glycolytic intermediate, fructose 1,6 bisphosphate, which is an inhibitor of mammalian AdSS is an activator of the parasite enzyme. Enzyme kinetics along with molecular docking suggests a mechanism for activation wherein F16BP seems to be binding to the Asp loop and inducing a conformation that facilitates aspartate binding to the enzyme active site. Like in other AdSS, a conserved arginine residue (Arg155) is involved in dimer crosstalk and interacts with IMP in the active site of the symmetry related subunit of PfAdSS. We also report on the iochemical characterization of the arginine mutants (R155L, R155K and R155A) which suggests that unlike in E. coil AdSS, Arg155 in PfAdSS influences both ligand binding and catalysis. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
We prove the spectral invariance of SG pseudo-differential operators on L-P(R-n), 1 < p < infinity, by using the equivalence of ellipticity and Fredholmness of SG pseudo-differential operators on L-p(R-n), 1 < p < infinity. A key ingredient in the proof is the spectral invariance of SC pseudo-differential operators on L-2(R-n).
Resumo:
Significant destruction (68%) of liver microsomal cytochrome P-450 and homogeneous cytochrome P-450 purified from PB-treated rats is noticed upon incubation with 10 mM pulegone at 37-degrees-C for 30 min. There is also a concomitant loss of heme. The destructive phenomenon does not require metabolic activation of pulegone. The destruction of purified cytochrome P-450 is time-dependent and saturable. Structure-activity studies suggest that an alpha-isopropylidine ketone unit with a methyl positioned para to the isopropylidine group as in pulegone is necessary for the in vitro destruction of cytochrome P-450. SKF-525A at a concentration of 4-mM obliterates the destruction of cytochrome P-450 by pulegone. Experiments with C-14-pulegone suggest that pulegone or its rearranged product binds covalently to the prosthetic heme of cytochrome P-450.
Resumo:
A cDNA clone has been isolated from a chicken liver library prepared against messenger RNA isolated after chronic estradiol-17β treatment. The clone, pP-450 IA - 61, has an insert of 900nt and the sequence shows high homology to CYPIA2 subfamily from four other species. A single injection of estradiol-17β to immature chicken results in a striking induction of mRNA hybridizing to labeled pP-450IA - 61. The probe also hybridizes to mRNA induced by 3 — methylcholanthrene in chicken. These results offer direct proof for the similarity in the mode of action at the transcriptional level of polyaromatic hydrocarbons and estrogenic compounds.