97 resultados para Nitrogen uptake


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this mini-review, I discuss some recent work on the stereochemistry and bonding of lone pairs of electrons in divalent compounds of the heavier carbon group elements (SnII, PbII) and in trivalent compounds of the heavier nitrogen group elements (BiIII). Recently developed methods that permit the real-space visualization of bonding patterns on the basis of density functional calculations of electronic structure, reveal details of the nature of s electron lone pairs in compounds of the heavier main group elements – their stereochemistry and their inertness (or lack thereof). An examination of tetragonal P4/nmm SnO, a-PbO and BiOF, and cubic Fm3m PbS provides a segue into perovskite phases of technological significance, including ferroelectric PbTiO3 and antiferroelectric/piezoelectric PbZrO3, in both of which the lone pairs on Pb atoms play a pivotal rôle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Much of the Bangalore sewage is treated in three streams namely Bellandur (K&C Valley),Vrishabhavati and Hebbal-Nagavara stream systems. Among these it is estimated that out of a total of about 500MLD of partially treated sewage is let into the Bellandur tank. We estimate that a total of about 77t N non-industrial anthropogenic nitrogen efflux (mainly urine and excreta) in Bangalore city. This is distributed between that handled by the three sewage streams, soak-pits and land deposition. About 17-24.5t N enters the Bellandur tank daily. This has been happening over few decades and our observations suggest that this approximately 380ha tank is functioning as a C and N removal system with reasonable efficiency. The ammoniacal and nitrate nitrogen content of the water at the discharge points were estimated and found that over 80% of the nitrogen influx and over 75% of the C influx is removed by this tank system. We observed that there are three nitrogen sinks namely bacterial, micro-algal and macrophytes. The micro-algal fraction is dominated by Microcystis and Euglenophyceae members and they appear to constitute a significant fraction. Water hyacinth represents the single largest representative of the macrophytes. This tank has been functioning in this manner for over three decades. We attempt to study this phenomenon from a material balance approach and show that it is functioning with a reasonable degree of satisfaction as a natural wetland. As the population served and concomitant influx into this wetland increases, there is a potential for the system to be overloaded and to collapse. Therefore a better understanding of its function and the need for maintenance is discussed in the paper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

C:N ratio of lake sediments provide valuable information about the source and proportions of terrestrial, phytogenic and phycogenic carbon and nitrogen. This study has been carried out in Varthur lake which is receiving sewage since many decades apart from large scale land cover changes. C:N profile of the surficial sediment layer collected in the rainy and the dry seasons revealed higher C:N values[43] due to the accumulation of autochthonous organic material mostly at the deeper portions of the lake. This also highlights N limitation in the sludge either due to uptake by micro and macro-biota or rapid volatilization, denitrification and possible leaching in water. Organic Carbon was lower towards the inlets and higher near the deeper zones. This pattern of Organic C deposition was aided by gusty winds and high flow conditions together with impacts by the land use land cover changes in the watershed. Spatial variability of C:N in surficial sediments is significant compared to its seasonal variability. This communication provides an insight to the pattern in which nutrients are distributed in the sludge/sediment and its variation across seasons and space impacted by the biotic process accompanied by the hydrodynamic changes in the lake.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports the studies conducted on removal of oxides of nitrogen (NOx) from diesel engine exhaust using electrical discharge plasma combined with adsorbing materials such as molecular sieves. This study is being reported for the first time. The exhaust is taken from a diesel engine of 6 kW under no load conditions. The characteristic behavior of a pulse energized dielectric barrier discharge reactor in the diesel exhaust treatment is reported. The NOx removal was not significant (36%) when the reactor without any packing was used. However, when the reactor was packed with molecular sieves (MS -3A, -4A & -13X), the NOx removal efficiency was increased to 78% particularly at a temperature of 200 °C. The studies were conducted at different temperatures and the results were discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A single-stage plasma-catalytic reactor in which catalytic materials were packed was used to remove nitrogen oxides. The packing material was scoria being made of various metal oxides including Al2O3, MgO, TiO2, etc. Scoria was able to act not only as dielectric pellets but also as a catalyst in the presence of reducing agent such as ethylene and ammonia. Without plasma discharge, scoria did not work well as a catalyst in the temperature range of 100 °C to 200 °C, showing less than 10% of NOx removal efficiency. When plasma is produced inside the reactor, the NOx removal efficiency could be increased to 60% in this temperature range.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AIN/CrN multilayer hard coatings with various bilayer thicknesses were fabricated by a reactive sputtering process. The microstructural and mechanical characterizations of multilayer coatings were investigated through transmission electron microscope (TEM) observations and the hardness measurements by nano indentation. In particular, the variation of chemical bonding states of the bilayer nitrides was elucidated by near edge X-ray absorption fine structure (NEXAFS) spectroscopy. Many broken nitrogen bonds were formed by decreasing the bilayer thickness of AIN/CrN multilayer coatings. Existence of optimum AIN/CrN multilayer coatings thickness for maximum hardness could be explained by the competition of softening by the formation of broken nitrogen bonds and strengthening induced by decreasing bilayer thickness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AlxTi1-xN/CrN multilayer coatings were fabricated by magnetron sputtering and those hardness variations were studied by observing the crack propagation and measuring the chemical bonding state of nitrides by Ti addition. While AlN/CrN multilayer shown stair-like crack propagation, AlxTi1-xN/CrN multilayer illustrated straight crack propagation. Most interestingly, Ti addition induced more broken nitrogen bonds in the nitride multilayers, leading to the reduction of hardness. However, the hardness of Al0.25Ti0.75N/CrN multilayer, having high Ti contents, increased by the formation of many Ti-N bond again instead of Al-N bond. From these results, we found that linear crack propagation behavior was dominated by broken nitrogen bonds in the AlxT1-xN/CrN multilayer coatings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An efficient methodology to oxidize benzylic and cinnamyl alcohols to their corresponding nitriles in excellent yields has been developed. This methodology employs DDQ as an oxidant and TMSN3 as a source of nitrogen in the presence of a catalytic amount of Cu(ClO4)(2)center dot 6H(2)O.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Organo-clay was prepared by incorporating different amounts (in terms of CEC, ranging from 134-840 mg of quaternary ammonium cation (QACs) such as hexadecytrimethylammonium bromide (C19H42N]Br) into the montmorillonite clay. Prepared organo-clays are characterized by CHN analyser and XRD to measure the amount of elemental content and interlayer spacing of surfactant modified clay. The batch experiments of sorption of permanganate from aqueous media by organo-clays was studied at different acidic strengths (pH 1-7). The experimental results show that the rate and amount of adsorption of permanganate was higher at lower pH compared to raw montmorillonite. Laboratory fixed bed experiments were conducted to evaluate the breakthrough time and nature of breakthrough curves. The shape of the breakthrough curves shows that the initial cationic surfactant loadings at 1.0 CEC of the clay is enough to enter the permanganate ions in to the interlamellar region of the surfactant modified smectile clays. These fixed bed studies were also applied to quantify the effect of bed-depth and breakthrough time during the uptake of permanganate. Calculation of thermodynamic parameters shows that the sorption of permanganate is spontaneous and follows the first order kinetics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The titled approaches were effected with various 2-substituted benzoylacetic acid oximes 3 (Beckmann) and 2-substituted malonamic acids 9 (Hofmann), their carboxyl groups being masked as a 2,4,10-trioxaadamantane unit (an orthoacetate). The oxime mesylates have been rearranged with basic Al2O3 in refluxing CHCl3, and the malonamic acids with phenyliodoso acetate and KOH/MeOH. Both routes are characterized by excellent overall yields. Structure confirmation of final products was conducted with X-ray diffraction in selected cases. The final N-benzoyl and N-(methoxycarbonyl) products are alpha-amino acids with both carboxyl and amino protection; hence, they are of great interest in peptide synthesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A combination of ab initio and classical Monte Carlo simulations is used to investigate the effects of functional groups on methane binding. Using Moller-Plesset (MP2) calculations, we obtain the binding energies for benzene functionalized with NH2, OH, CH3, COOH, and H2PO3 and identify the methane binding sites. In all cases, the preferred binding sites are located above the benzene plane in the vicinity of the benzene carbon atom attached to the functional group. Functional groups enhance methane binding relative to benzene (-6.39 kJ/mol), with the largest enhancement observed for H2PO3 (-8.37 kJ/mol) followed by COOH and CH3 (-7.77 kJ/mol). Adsorption isotherms are obtained for edge-functionalized bilayer graphene nanoribbons using grand canonical Monte Carlo simulations with a five-site methane model. Adsorbed excess and heats of adsorption for pressures up to 40 bar and 298 K are obtained with functional group concentrations ranging from 3.125 to 6.25 mol 96 for graphene edges functionalized with OH, NH2, and COOH. The functional groups are found to act as preferred adsorption sites, and in the case of COOH the local methane density in the vicinity of the functional group is found to exceed that of bare graphene. The largest enhancement of 44.5% in the methane excess adsorbed is observed for COOH-functionalized nanoribbons when compared to H terminated ribbons. The corresponding enhancements for OH- and NH2-functionalized ribbons are 10.5% and 3.7%, respectively. The excess adsorption across functional groups reflects the trends observed in the binding energies from MP2 calculations. Our study reveals that specific site functionalization can have a significant effect on the local adsorption characteristics and can be used as a design strategy to tailor materials with enhanced methane storage capacity.