105 resultados para Neonates, EEG Analysis, Fractal Dimensions, Signal Processing


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We address the problem of local-polynomial modeling of smooth time-varying signals with unknown functional form, in the presence of additive noise. The problem formulation is in the time domain and the polynomial coefficients are estimated in the pointwise minimum mean square error (PMMSE) sense. The choice of the window length for local modeling introduces a bias-variance tradeoff, which we solve optimally by using the intersection-of-confidence-intervals (ICI) technique. The combination of the local polynomial model and the ICI technique gives rise to an adaptive signal model equipped with a time-varying PMMSE-optimal window length whose performance is superior to that obtained by using a fixed window length. We also evaluate the sensitivity of the ICI technique with respect to the confidence interval width. Simulation results on electrocardiogram (ECG) signals show that at 0dB signal-to-noise ratio (SNR), one can achieve about 12dB improvement in SNR. Monte-Carlo performance analysis shows that the performance is comparable to the basic wavelet techniques. For 0 dB SNR, the adaptive window technique yields about 2-3dB higher SNR than wavelet regression techniques and for SNRs greater than 12dB, the wavelet techniques yield about 2dB higher SNR.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Over past few years, the studies of cultured neuronal networks have opened up avenues for understanding the ion channels, receptor molecules, and synaptic plasticity that may form the basis of learning and memory. The hippocampal neurons from rats are dissociated and cultured on a surface containing a grid of 64 electrodes. The signals from these 64 electrodes are acquired using a fast data acquisition system MED64 (Alpha MED Sciences, Japan) at a sampling rate of 20 K samples with a precision of 16-bits per sample. A few minutes of acquired data runs in to a few hundreds of Mega Bytes. The data processing for the neural analysis is highly compute-intensive because the volume of data is huge. The major processing requirements are noise removal, pattern recovery, pattern matching, clustering and so on. In order to interface a neuronal colony to a physical world, these computations need to be performed in real-time. A single processor such as a desk top computer may not be adequate to meet this computational requirements. Parallel computing is a method used to satisfy the real-time computational requirements of a neuronal system that interacts with an external world while increasing the flexibility and scalability of the application. In this work, we developed a parallel neuronal system using a multi-node Digital Signal processing system. With 8 processors, the system is able to compute and map incoming signals segmented over a period of 200 ms in to an action in a trained cluster system in real time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We introduce a novel temporal feature of a signal, namely extrema-based signal track length (ESTL) for the problem of speech segmentation. We show that ESTL measure is sensitive to both amplitude and frequency of the signal. The short-time ESTL (ST_ESTL) shows a promising way to capture the significant segments of speech signal, where the segments correspond to acoustic units of speech having distinct temporal waveforms. We compare ESTL based segmentation with ML and STM methods and find that it is as good as spectral feature based segmentation, but with lesser computational complexity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we consider the problem of designing minimum mean squared error (MMSE) filterbank precoder and equalizer for multiple input multiple output (MIMO) frequency selective channels. We derive the conditions to be satisfied by the optimal precoder-equalizer pair, and provide an iterative algorithm for solving them. The optimal design is very general, in that it is not constrained by channel dimensions, channel order, channel rank, or the input constellation. We also discuss some pertinent difierences between the filterbank approach and the space-time approach to the design of optimal precoder and equalizer. Simulation results demonstrate that the proposed design performs better than the space-time systems while supporting a higher data rate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pre-whitening techniques are employed in blind correlation detection of additive spread spectrum watermarks in audio signals to reduce the host signal interference. A direct deterministic whitening (DDW) scheme is derived in this paper from the frequency domain analysis of the time domain correlation process. Our experimental studies reveal that, the Savitzky-Golay Whitening (SGW), which is otherwise inferior to DDW technique, performs better when the audio signal is predominantly lowpass. The novelty of this paper lies in exploiting the complementary nature to the two whitening techniques to obtain a hybrid whitening (HbW) scheme. In the hybrid scheme the DDW and SGW techniques are selectively applied, based on short time spectral characteristics of the audio signal. The hybrid scheme extends the reliability of watermark detection to a wider range of audio signals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we develop a low-complexity message passing algorithm for joint support and signal recovery of approximately sparse signals. The problem of recovery of strictly sparse signals from noisy measurements can be viewed as a problem of recovery of approximately sparse signals from noiseless measurements, making the approach applicable to strictly sparse signal recovery from noisy measurements. The support recovery embedded in the approach makes it suitable for recovery of signals with same sparsity profiles, as in the problem of multiple measurement vectors (MMV). Simulation results show that the proposed algorithm, termed as JSSR-MP (joint support and signal recovery via message passing) algorithm, achieves performance comparable to that of sparse Bayesian learning (M-SBL) algorithm in the literature, at one order less complexity compared to the M-SBL algorithm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we deal with low-complexity near-optimal detection/equalization in large-dimension multiple-input multiple-output inter-symbol interference (MIMO-ISI) channels using message passing on graphical models. A key contribution in the paper is the demonstration that near-optimal performance in MIMO-ISI channels with large dimensions can be achieved at low complexities through simple yet effective simplifications/approximations, although the graphical models that represent MIMO-ISI channels are fully/densely connected (loopy graphs). These include 1) use of Markov random field (MRF)-based graphical model with pairwise interaction, in conjunction with message damping, and 2) use of factor graph (FG)-based graphical model with Gaussian approximation of interference (GAI). The per-symbol complexities are O(K(2)n(t)(2)) and O(Kn(t)) for the MRF and the FG with GAI approaches, respectively, where K and n(t) denote the number of channel uses per frame, and number of transmit antennas, respectively. These low-complexities are quite attractive for large dimensions, i.e., for large Kn(t). From a performance perspective, these algorithms are even more interesting in large-dimensions since they achieve increasingly closer to optimum detection performance for increasing Kn(t). Also, we show that these message passing algorithms can be used in an iterative manner with local neighborhood search algorithms to improve the reliability/performance of M-QAM symbol detection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a method of designing a programmable signal processor based on a bit parallel matrix vector matrix multiplier (linear transformer). The salient feature of this design is that the efficiency of the direct vector matrix multiplier is improved and VLSI design is made much simpler by trading off the more expensive arithematic operation (multiplication) for 'cheaper' manipulation (addition/subtraction) of the data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The instants at which significant excitation of vocal tract take place during voicing are referred to as epochs. Epochs and strengths of excitation pulses at epochs are useful in characterizing voice source. Epoch filtering technique proposed by the authors determine epochs from speech waveform. In this paper we propose zero-phase inverse filtering to obtain strengths of excitation pulses at epochs. Zero-phase inverse filter compensates the gross spectral envelope of short-time spectrum of speech without affecting phase characteristics. Linear prediction analysis is used to realize the zero-phase inverse filter. Source characteristics that can be derived from speech using this technique are illustrated with examples.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The design and operation of the minimum cost classifier, where the total cost is the sum of the measurement cost and the classification cost, is computationally complex. Noting the difficulties associated with this approach, decision tree design directly from a set of labelled samples is proposed in this paper. The feature space is first partitioned to transform the problem to one of discrete features. The resulting problem is solved by a dynamic programming algorithm over an explicitly ordered state space of all outcomes of all feature subsets. The solution procedure is very general and is applicable to any minimum cost pattern classification problem in which each feature has a finite number of outcomes. These techniques are applied to (i) voiced, unvoiced, and silence classification of speech, and (ii) spoken vowel recognition. The resulting decision trees are operationally very efficient and yield attractive classification accuracies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper is concerned with the optimal flow control of an ATM switching element in a broadband-integrated services digital network. We model the switching element as a stochastic fluid flow system with a finite buffer, a constant output rate server, and a Gaussian process to characterize the input, which is a heterogeneous set of traffic sources. The fluid level should be maintained between two levels namely b1 and b2 with b1

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The coding gain in subband coding, a popular technique for achieving signal compression, depends on how the input signal spectrum is decomposed into subbands. The optimality of such decomposition is conventionally addressed by designing appropriate filter banks. The issue of optimal decomposition of the input spectrum is addressed by choosing the set of band that, for a given number of bands, will achieve maximum coding gain. A set of necessary conditions for such optimality is derived, and an algorithm to determine the optimal band edges is then proposed. These band edges along with ideal filters, achieve the upper bound of coding gain for a given number of bands. It is shown that with ideal filters, as well as with realizable filters for some given effective length, such a decomposition system performs better than the conventional nonuniform binary tree-structured decomposition in some cases for AR sources as well as images

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gabor's analytic signal (AS) is a unique complex signal corresponding to a real signal, but in general, it admits infinitely-many combinations of amplitude and frequency modulations (AM and FM, respectively). The standard approach is to enforce a non-negativity constraint on the AM, but this results in discontinuities in the corresponding phase modulation (PM), and hence, an FM with discontinuities particularly when the underlying AM-FM signal is over-modulated. In this letter, we analyze the phase discontinuities and propose a technique to compute smooth AM and FM from the AS, by relaxing the non-negativity constraint on the AM. The proposed technique is effective at handling over-modulated signals. We present simulation results to support the theoretical calculations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Automated image segmentation techniques are useful tools in biological image analysis and are an essential step in tracking applications. Typically, snakes or active contours are used for segmentation and they evolve under the influence of certain internal and external forces. Recently, a new class of shape-specific active contours have been introduced, which are known as Snakuscules and Ovuscules. These contours are based on a pair of concentric circles and ellipses as the shape templates, and the optimization is carried out by maximizing a contrast function between the outer and inner templates. In this paper, we present a unified approach to the formulation and optimization of Snakuscules and Ovuscules by considering a specific form of affine transformations acting on a pair of concentric circles. We show how the parameters of the affine transformation may be optimized for, to generate either Snakuscules or Ovuscules. Our approach allows for a unified formulation and relies only on generic regularization terms and not shape-specific regularization functions. We show how the calculations of the partial derivatives may be made efficient thanks to the Green's theorem. Results on synthesized as well as real data are presented.