131 resultados para Negative frequency-dependent selection
Resumo:
We report the tunable dielectric constant of titania films with low leakage current density. Titanium dioxide (TiO2) films of three different thicknesses (36, 63 and 91 nm) were deposited by the consecutive steps of solution preparation, spin-coating, drying, and firing at different temperatures. The problem of poor adhesion between Si substrate and TiO2 insulating layer was resolved by using the plasma activation process. The surface roughness was found to increase with increasing thickness and annealing temperature. The electrical investigation was carried out using metal-oxide-semiconductor structure. The flat band voltage (V-FB), oxide trapped charge (Q(ot)), dielectric constant (kappa) and equivalent oxide thicknesses are calculated from capacitance-voltage (C-V) curves. The C-V characteristics indicate a thickness dependent dielectric constant. The dielectric constant increases from 31 to 78 as thickness increases from 36 to 91 nm. In addition to that the dielectric constant was found to be annealing temperature and frequency dependent. The films having thickness 91 nm and annealed at 600 A degrees C shows the low leakage current density. Our study provides a broad insight of the processing parameters towards the use of titania as high-kappa insulating layer, which might be useful in Si and polymer based flexible devices.
Resumo:
A randomly interrupted strand model of a one-dimensional conductor is considered. An exact analytical expression is obtained for the temperature-dependent ac mobility for a finite segment drawn at random, taking into account the reflecting barriers at the two open ends. The real part of mobility shows a broad resonance as a function of both frequency and temperature, and vanishes quadratically in the dc limit. The frequency (temperature) maximum shifts to higher values for higher temperatures (frequencies).
Resumo:
Ultrafast Raman loss spectroscopy (URLS) enables one to obtain the vibrational structural information of molecular systems including fluorescent materials. URLS, a nonlinear process analog to stimulated Raman gain, involves a narrow bandwidth picosecond Raman pump pulse anda femtosecond broadband white light continuum. Under nonresonant condition, the Raman response appears as a negative (loss) signal, whereas, on resonance with the electronic transition the line shape changes from a negative to a positive through a dispersive form. The intensities observed and thus, the Franck-Condon activity (coordinate dependent), are sensitive to the wavelength of the white light corresponding to a particular Raman frequency with respect to the Raman pump pulse wavelength, i.e., there is a mode-dependent response in URLS. (C) 2010 American Institute of Physics.
Resumo:
The temperature and pressure dependence of Cl-35 NQR frequency and spin lattice relaxation time (T-1) were investigated in 2,3-dichloroanisole. Two NQR signals were observed throughout the temperature and pressure range studied. T-1 were measured in the temperature range from 77 to 300 K and from atmospheric pressure to 5 kbar. Relaxation was found to be due to the torsional motion of the molecule and also reorientation f motion of the CH3 group. T-1 versus temperature data were analyzed on the basis of Woessner and Gutowsky model, and the activation energy for the reorientation of the CH3 group was estimated. The temperature dependence of the average torsional lifetimes of the molecules and the transition probabilities were also obtained. NQR frequency shows a nonlinear behavior with pressure, indicating both dynamic and static effects of pressure. The pressure coefficients were observed to be positive for both the lines. A thermodynamic analysis of the data was carried out to determine the constant volume temperature coefficients of the NQR frequency. The variation of spin lattice time with pressure was very small, showing that the relaxation is mainly due to the torsional motions of the molecules. Copyright (C) 2010 John Wiley & Sons, Ltd.
Resumo:
A microscopic expression for the frequency and wave vector dependent dielectric constant of a dense dipolar liquid is derived starting from the linear response theory. The new expression properly takes into account the effects of the translational modes in the polarization relaxation. The longitudinal and the transverse components of the dielectric constant show vastly different behavior at the intermediate values of the wave vector k. We find that the microscopic structure of the dense liquid plays an important role at intermediate wave vectors. The continuum model description of the dielectric constant, although appropriate at very small values of wave vector, breaks down completely at the intermediate values of k. Numerical results for the longitudinal and the transverse dielectric constants are obtained by using the direct correlation function from the mean‐spherical approximation for dipolar hard spheres. We show that our results are consistent with all the limiting expressions known for the dielectric function of matter.
Resumo:
We present the details of a formalism for calculating spatially varying zero-frequency response functions and equal-time correlation functions in models of magnetic and mixed-valence impurities of metals. The method is based on a combination of perturbative, thermodynamic scaling theory [H. R. Krishna-murthy and C. Jayaprakash, Phys. Rev. B 30, 2806 (1984)] and a nonperturbative technique such as the Wilson renormalization group. We illustrate the formalism for the spin-1/2 Kondo problem and present results for the conduction-spin-density�impurity-spin correlation function and conduction-electron charge density near the impurity. We also discuss qualitative features that emerge from our calculations and discuss how they can be carried over to the case of realistic models for transition-metal impurities.
Resumo:
Transmit antenna selection (AS) has been adopted in contemporary wideband wireless standards such as Long Term Evolution (LTE). We analyze a comprehensive new model for AS that captures several key features about its operation in wideband orthogonal frequency division multiple access (OFDMA) systems. These include the use of channel-aware frequency-domain scheduling (FDS) in conjunction with AS, the hardware constraint that a user must transmit using the same antenna over all its assigned subcarriers, and the scheduling constraint that the subcarriers assigned to a user must be contiguous. The model also captures the novel dual pilot training scheme that is used in LTE, in which a coarse system bandwidth-wide sounding reference signal is used to acquire relatively noisy channel state information (CSI) for AS and FDS, and a dense narrow-band demodulation reference signal is used to acquire accurate CSI for data demodulation. We analyze the symbol error probability when AS is done in conjunction with the channel-unaware, but fair, round-robin scheduling and with channel-aware greedy FDS. Our results quantify how effective joint AS-FDS is in dispersive environments, the interactions between the above features, and the ability of the user to lower SRS power with minimal performance degradation.
Resumo:
We have synthesized Ag-Cu alloy nanoparticles of four different compositions by using the laser ablation technique with the target under aqueous medium. Following this, we report a morphological transition in the nanoparticles from a normal two-phase microstructure to a structure with random segregation and finally a core shell structure at small sizes as a function of Cu concentration. To illustrate the composition dependence of morphology, we report observations carried out on nanoparticles of two different sizes: similar to 5 and similar to 20 nm. The results could be rationalized through the thermodynamic modeling of free energy of phase mixing and wettability of the alloying phases.
Resumo:
For a multilayered specimen, the back-scattered signal in frequency-domain optical-coherence tomography (FDOCT) is expressible as a sum of cosines, each corresponding to a change of refractive index in the specimen. Each of the cosines represent a peak in the reconstructed tomogram. We consider a truncated cosine series representation of the signal, with the constraint that the coefficients in the basis expansion be sparse. An l(2) (sum of squared errors) data error is considered with an l(1) (summation of absolute values) constraint on the coefficients. The optimization problem is solved using Weiszfeld's iteratively reweighted least squares (IRLS) algorithm. On real FDOCT data, improved results are obtained over the standard reconstruction technique with lower levels of background measurement noise and artifacts due to a strong l(1) penalty. The previous sparse tomogram reconstruction techniques in the literature proposed collecting sparse samples, necessitating a change in the data capturing process conventionally used in FDOCT. The IRLS-based method proposed in this paper does not suffer from this drawback.
Resumo:
Transcription of tRNA genes by RNA polymerase III is controlled by the internal conserved sequences within the coding region and the immediate upstream flanking sequences. A highly transcribed copy of glycyl tRNA gene tRNA1(Gly)-1 from Bombyx mori is down regulated by sequences located much farther upstream in the region -150 to -300 nucleotides (nt), with respect to the +1 nt of tRNA. The negative regulatory effect has been narrowed down to a sequence motif 'TATATAA', a perfect consensus recognised by the TATA binding protein, TBP. This sequence element, when brought closer to the transcription start point, on the other hand, exerts a positive effect by promoting transcription of the gene devoid of other cis regulatory elements. The identity of the nuclear protein interacting with this 'TATATAA' element to TBP has been established by antibody and mutagenesis studies. The 'TATATAA' element thus influences the transcription of tRNA genes positively or negatively in a position-dependent manner either by recruitment or sequestration of TBP from the transcription machinery.
Resumo:
Total strain controlled low cycle fatigue tests on 316L(N) stainless steel have been conducted in air at various strain rates in the temperature range of 773-873 K to identify the operative time-dependent mechanisms and to understand their influence on the cyclic deformation and fracture behaviour of the alloy. The cyclic stress response at all the testing conditions was marked by an initial hardening followed by stress saturation. A negative strain rate stress response is observed under specific testing conditions which is attributed to dynamic strain ageing (DSA). Transmission electron microscopy studies reveal that there is an increase in the dislocation density and enhanced slip planarity in the DSA regime. Fatigue life is found to decrease with a decrease in strain rate. The degradation in fatigue resistance is attributed to the detrimental effects associated with DSA and oxidation. Quantitative measurement of secondary cracks indicate that both transgranular and intergranular cracking are accelerated predominantly under conditions conducive to DSA.
Resumo:
The perception of ultraviolet (UV) light by spiders has so far been only demonstrated in salticids. Crab spiders (Thomisidae) hunt mostly on flowers and need to find appropriate hunting sites. Previous studies have shown that some crab spiders that reflect UV light use UV contrast to enhance prey capture. The high UV contrast can be obtained either by modulation of body colouration or active selection of appropriate backgrounds for foraging. We show that crab spiders (Thomisus sp.)hunting on Spathiphyllum plants use chromatic contrast, especially UV contrast, to make themselves attractive to hymenopteran prey. Apart from that, they are able to achieve high UV contrast by active selection of non-UV reflecting surfaces when given a choice of UV-reflecting and non-UV reflecting surfaces in the absence of odour cues. Honeybees (Apis cerana) approached Spathiphyllum plants bearing crab spiders on which the spiders were high UV-contrast targets with greater frequency than those plants on which the UV-contrast of the spiders was low. Thus, crab spiders can perceive UV and may use it to choose appropriate backgrounds to enhance prey capture, by exploiting the attraction of prey such as honeybees to UV.
Time-dependent flows of rotating and stratified fluids in geometries with non-uniform cross-sections
Resumo:
Unsteady rotating and stratified flows in geometries with non-uniform cross-sections are investigated under Oseen approximation using Laplace transform technique. The solutions are obtained in closed form and they reveal that the flow remains oscillatory even after infinitely large time. The existence of inertial waves propagating in both positive and negative directions of the flow is observed. When the Rossby or Froude number is close to a certain infinite set of critical values the blocking and back flow occur and the flow pattern becomes more and more complicated with increasing number of stagnant zones when each critical value is crossed. The analogy that is observed in the solutions for rotating and stratified flows is also discussed.
Resumo:
TWIK-related K+ channel TREK1, a background leak K+ channel, has been strongly implicated as the target of several general and local anesthetics. Here, using the whole-cell and single-channel patch-clamp technique, we investigated the effect of lidocaine, a local anesthetic, on the human (h) TREK1 channel heterologously expressed in human embryonic kidney 293 cells by an adenoviral-mediated expression system. Lidocaine, at clinical concentrations, produced reversible, concentration-dependent inhibition of hTREK1 current, with IC50 value of 180 mu M, by reducing the single-channel open probability and stabilizing the closed state. We have identified a strategically placed unique aromatic couplet (Tyr352 and Phe355) in the vicinity of the protein kinase A phosphorylation site, Ser348, in the C-terminal domain (CTD) of hTREK1, that is critical for the action of lidocaine. Furthermore, the phosphorylation state of Ser348 was found to have a regulatory role in lidocaine-mediated inhibition of hTREK1. It is interesting that we observed strong intersubunit negative cooperativity (Hill coefficient = 0.49) and half-of-sites saturation binding stoichiometry (half-reaction order) for the binding of lidocaine to hTREK1. Studies with the heterodimer of wild-type (wt)-hTREK1 and Delta 119 C-terminal deletion mutant (hTREK1(wt)-Delta 119) revealed that single CTD of hTREK1 was capable of mediating partial inhibition by lidocaine, but complete inhibition necessitates the cooperative interaction between both the CTDs upon binding of lidocaine. Based on our observations, we propose a model that explains the unique kinetics and provides a plausible paradigm for the inhibitory action of lidocaine on hTREK1.
Resumo:
An isolated wind power generation scheme using slip ring induction machine (SRIM) is proposed. The proposed scheme maintains constant load voltage and frequency irrespective of the wind speed or load variation. The power circuit consists of two back-to-back connected inverters with a common dc link, where one inverter is directly connected to the rotor side of SRIM and the other inverter is connected to the stator side of the SRIM through LC filter. Developing a negative sequence compensation method to ensure that, even under the presence of unbalanced load, the generator experiences almost balanced three-phase current and most of the unbalanced current is directed through the stator side converter is the focus here. The SRIM controller varies the speed of the generator with variation in the wind speed to extract maximum power. The difference of the generated power and the load power is either stored in or extracted from a battery bank, which is interfaced to the common dc link through a multiphase bidirectional fly-back dc-dc converter. The SRIM control scheme, maximum power point extraction algorithm and the fly-back converter topology are incorporated from available literature. The proposed scheme is both simulated and experimentally verified.