188 resultados para Native Range Studies


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The variation of resistivity in an amorphous As30Te70-xSix system of glasses with high pressure has been studied for pressures up to 8 GPa. It is found that the electrical resistivity and the conduction activation energy decrease continuously with increase in pressure, and samples become metallic in the pressure range 1.0-2.0 GPa. Temperature variation studies carried out at a pressure of 0.92 GPa show that the activation energies lie in the range 0.16-0.18eV. Studies on the composition/average co-ordination number (r) dependence of normalized electrical resistivity at different pressures indicate that rigidity percolation is extended, the onset of the intermediate phase is around (r) = 2.44, and completion at (r) = 2.56, respectively, while the chemical threshold is at (r) = 2.67. These results compare favorably with those obtained from electrical switching and differential scanning calorimetric studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nanostructured MnO2 was synthesized at ambient condition by reduction of potassium permanganate with aniline. Powder X-ray diffraction, thermal analysis (thermogravimetric and differential thermal analysis), Brunauer-Emmett-Teller surface area, and infrared spectroscopy studies were carried out for physical and chemical characterization. The as-prepared MnO2 was amorphous and contained particles of 5-10 nm diameter. Upon annealing at temperatures >400°C, the amorphous MnO2 attained crystalline α-phase with a concomitant change in morphology. A gradual conversion of nanoparticles to nanorods is evident from scanning electron microscopy and transmission electron microscopy (TEM) studies. High-resolution TEM images suggested that nanoparticles and nanorods grow in different crystallographic planes. Capacitance behavior was studied by cyclic voltammetry and galvanostatic charge-discharge cycling in a potential range from -0.2 to 1.0 V vs SCE in 0.1 M sodium sulfate solution. Specific capacitance of about 250 F g-1 was obtained at a current density of 0.5 mA cm-2(0.8 A g-1).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Multiwall carbon nanotubes (MWCNTs) were decorated with crystalline zinc oxide nanoparticles (ZnO NPs) by wet chemical route to form MWCNT/ZnO NPs hybrid. The hybrid sample was characterized by scanning and transmission electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopy. Electrical conductivity of the hybrid can be tuned by varying the ZnO NPs content in the hybrid. In order to investigate the effect of nanoparticles loading on the conduction of MWCNTs network, electrical conductivity studies have been carried out in the wide temperature range 1.5-300K. The electrical conductivity of the hybrid below 100K is explained with the combination of variable range hopping conduction and thermal fluctuation induced tunnelling model. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coccinia indica agglutinin (CIA) is a chitooligosaccharide-specific lectin with two binding sites/homodimer of M(r) 32,000. Quenching studies implied tryptophan involvement in binding activity, which was confirmed by chemical modification experiments (A. R. Sanadi and A. Surolia, submitted for publication). Binding of 4-methylumbelliferyl chitooligosaccharides has been carried out to study their binding by CIA. Reversal experiments confirm the validity of the data previously obtained (A. R. Sanadi and A. Surolia, submitted for publication) from intrinsic fluorescence studies. Surprisingly, unlike wheat germ agglutinin, there is no consistent thermodynamic effect of the chromophoric label on binding activities as compared with the native sugars. From the changes in the optical properties of the chromophoric group upon binding to CIA, it has been possible to confirm that the tryptophan located in the binding site is closest to the fourth subsite. Thermodynamic analysis shows that the binding of the labeled tetrasaccharide is very strongly entropically driven, with the terminal, nonreducing sugar residue protruding from the binding pocket. The results of stopped-flow kinetic studies on the binding of the chromophoric trisaccharide by CIA show that the mechanism of binding is a one-step process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The binding of Artocarpus integrifolia lectin (jacalin) to 4-methylumbelliferyl (Meumb)-glycosides, Gal alpha Meumb, Gal beta Meumb, GalNAc alpha Meumb, GalNAc beta-Meumb, and Gal beta 3GalNAc beta Meumb was examined by extrinsic fluorescence quenching titration and stopped flow spectrofluorimetry. The binding was characterized by 100% quenching of fluorescence of Meumb-glycosides. Their association constants range from 2.0 x 10(4) to 1.58 x 10(6) M-1 at 15 degrees C. Entropic contribution is the major stabilizing force for avid binding of Meumb-glycosides indicating the existence of a hydrophobic site that is complementary to their methylumbelliferyl group. The second order association rate constants for interaction of these sugars with lectin at 15 degrees C vary from 8.8 x 10(5) to 3.24 x 10(6) M-1 S-1, at pH 7.2. The first order dissociation rate constants range from 2.30 to 43.0 S-1 at 15 degrees C. Despite the differences in their association rate constants, the overall values of association constants for these saccharides are determined by their dissociation rate constants. The second order rate constant for the association of Meumb-glycosides follows a pattern consistent with the magnitude of the activation energies involved therin. Activation parameters for association of all ligands illustrate that the origin of the barrier between binding of jacalin to Meumb-glycosides is entropic, and the enthalpic contribution is small. A correlation between these parameters and the structure of the ligands on the association rates underscores the importance of steric factors in determining protein saccharide recognitions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bubble formation under constant pressure conditions has been investigated for wide range of variation of liquid properties.Air bubbles were formed from single horizontal orifices submerged in liquids whose viscosity varied from 1·0 to 600 cPs and surface tension from 37 to 72 dyn/cm. Air flow rate was varied from 2 to 250 cm3/sec and the orifice diameter from 0·0515 to 0·4050 cm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A model based on two step mechanism of bubble formation is proposed. The resulting equations are used to explain the discrepancies existing in the literature. Data have been collected over a wide range of variables to test the model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Benzene drops were formed in continuous media of water and glycerine of varying physical properties. The effect on drop volumes of variables like volumetric flow-rate, interfacial tension, continuous phase viscosity and capillary diameter was studied. An equation has been developed, based on a two stage drop formation mechanism, which predicts drop volumes within an average error of 7 per cent for the range of physical properties employed in this investigation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The favoured conformations of the prolyl residue have been obtained by calculating their potential energies arising from bond-angle strain, torsion-angle strain, non-bonded and electrostatic interatomic energies. In addition to the five membered ring, the peptide unit at the amino end (with ω = 180°) and the C′ atom at the carboxyl end have been taken into account. It is found that there are two local minima in the configurational space of the parameters defining the conformation, as is actually observed-one (denoted by B) with Cγ displaced on the same side as C′, which is lower in energy than the other (denoted by A) with Cγ displaced on the opposite side of C′. The other four atoms Cδ, N, Cα, Cβ are nearly in a plane. The conformations of minimum energy (for both A and B) have bond angles very close to the mean observed values while the torsion angles are well within the range observed in various structures for each type. Taking into account the fact that the influence of neighbouring molecules in a crystal structure may make the conformation of a molecule different from the minimal one, the ranges of the conformational parameters for which the energy is within 0.6 kcal/mole above the minimum value (called the "most probable range") and within 1.2 kcal/mole (called the "probable range") have been determined. The ranges thus obtained, agree well with observation, and most of the observed data lie within the most probable ranges, although differing appreciably from the conformation of minimum energy. The study has been extended, in a limited way, to the conformation of the ring in the amino acid proline. Since the nitrogen is tetrahedral in this (as contrasted with being planar in the prolyl residue), it is found that any one of the five atoms can be out of plane (either way), with the other four lying nearly in a plane. These correspond to low energy conformations (up to 1.2 kcal/mole above the minimum). One such example, in which the Cα atom is out of plane is known for dl-proline · HCl. It is also shown that in these calculations energies due to bond length distortions can be neglected to a good degree of approximation, provided the 'best' values of the bond lengths for the particular compound are used in the theoretical calculations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A study of atomization has been made with an external mixing-type pneumatic atomizer. The drops were sampled on Vaseline-coated cells using a shutter arrangement and their sizes were measured under a microscope. The effects of liquid viscosity, liquid surface tension, liquid flow rate, air velocity, and nozzle angle on drop size have been studied. A model, which explains adequately the influence of various factors, has been proposed. This model predicts the values of average drop sizes over a wide range of operating conditions. The model also explains the data of other investigators who have used other kinds of pneumatic atomizers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using a pulse method the ultrasonic absorption has been studied in the frequency range of 2 to 10 Mc/s in dilute aqueous solutions of nitrogen tetroxide gas at room temperature. The absorption peaks (αλ vs frequency) observed in this study are attributed to the ionic dissociation reaction of the nitrous acid into its constituent ions. The rate constants of the forward and backward reactions are calculated using the theory of Tabuchi. The variation of the logarithm of the rate constant of the bimolecular ionic reaction, namely, log10 kb, with the square root of ionic strength qualitatively follows Brönsted's theory for ionic reactions in solutions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A detailed investigation of the hydrolysis of nickel in the lower concentration range has been made. The results have been analysed on the basis of 'Core + links' theory and on the assumption of the formation of one predominant complex. Evidence is obtained for the formation of Ni2 (OH)62- and its stability constant is calculated to be 1038.78

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The green nitrosobenzene monomer is reduced polarographically to phenylhydroxylamine in the pH range 4—9. Though this reduction is known to be a two-electron process, coulometry invariably gives a lower value of n because of the reaction of unreacted nitrosobenzene and the phenylhydroxylamine formed. The green monomer is attacked by mercury in acid medium. In alkaline medium, the green monomer undergoes a change that follows first-order kinetics with respect to nitrosobenzene. The rate of the transformation depends on the solvent. It decreases in the order acetone > ethanol > dioxan.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Biofunctionalization of noble metal nanoparticles like Ag, Au is essential to obtain biocompatibility for specific biomedical applications. Silver nanciparticles are being increasingly used in bio-sensing applications owing to excellent optoelectronic properties. Among the serum albumins, the most abundant proteins in plasma, a wide range of physiological functions of Bovine Serum Albumin (BSA) has made it a model system for biofunctionalization. In absence of adequate prior reports, this study aims to investigate the interaction between silver nanoparticles and BSA. The interaction of BSA [0.05-0.85% concentrations] with Ag nanoparticles [50 ppm concentration] in aqueous dispersion was Studied through UV-vis spectral changes, morphological and surface structural changes. At pH 7, which is More than the isoelectric point of BSA, a decrease in absorbance at plasmon peak of uninteracted nanciparticles (425 mn) was noted till 0.45% BSA, beyond that a blue shift towards 410 urn was observed. The blue shift may be attributed to enhanced electron density on the particle surfaces. Increasing pH to 12 enhanced the blue shift further to 400 rim. The conformational changes in BSA at alkaline pH ranges and consequent hydrophobic interactions also played an important role. The equilibrium adsorption data fitted better to Freundlich isotherm compared to Langmuir Curve. The X-ray diffraction study revealed complete coverage of Ag nanoparticles by BSA. The scanning electron microscopic study of the interacted nanoparticles was also carried Out to decipher morphological changes. This study established that tailoring the concentration of BSA and pH of the interaction it was possible to reduce aggregation of nanoparticles. Biofunctionalized Ag nanoparticles with reduced aggregation will be more amenable towards bio-sensing applications. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The green nitrosobenzene monomer is reduced polarographically to phenylhydroxylamine in the pH range 4—9. Though this reduction is known to be a two-electron process, coulometry invariably gives a lower value of n because of the reaction of unreacted nitrosobenzene and the phenylhydroxylamine formed. The green monomer is attacked by mercury in acid medium. In alkaline medium, the green monomer undergoes a change that follows first-order kinetics with respect to nitrosobenzene. The rate of the transformation depends on the solvent. It decreases in the order acetone > ethanol > dioxan.