85 resultados para Nanorods


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lead telluride micro and nanostructures have been grown on silicon and glass substrates by a simple thermal evaporation of PbTe in high vacuum of 3 x 10(-5) mbar. Growth was carried out for two different distances between the evaporation source and the substrates. Synthesized products consist of nanorods and micro towers for 2.4 cm and 3.4 cm of distance between the evaporation source and the substrates respectively. X-ray diffraction and transmission electron microscopy studies confirmed crystalline nature of the nanorods and micro towers. Nanorods were grown by vapor solid mechanism. Each micro tower consists of nano platelets and is capped with spherical catalyst particle at their end, suggesting that the growth proceeds via vapor-liquid-solid (VLS) mechanism. EDS spectrum recorded on the tip of the micro tower has shown the presence of Pb and Te confirming the self catalytic VLS growth of the micro towers. These results open up novel synthesis methods for PbTe nano and microstructures for various applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The thermal oxidation process of the indium nitride (InN) nanorods (NRs) was studied. The SEM studies reveal that the cracked and burst mechanism for the formation of indium oxide (In2O3) nanostructures by oxidizing the InN NRs at higher temperatures. XRD results confirm the bcc crystal structure of the as prepared In2O3 nanostructures. Strong and broad photoluminescence spectrum located at the green to red region with maximum intensity at 566 nm along with a weak ultraviolet emission at 338 nm were observed due to oxygen vacancy levels and free excitonic transitions, respectively. The valence band onset energy of 2.1 eV was observed from the XPS valence band spectrum, clearly justifies the alignment of Fermi level to the donor level created due to the presence of oxygen vacancies which were observed in the PL spectrum. The elemental ratio In:O in as prepared In2O3 was found to be 42:58 which is in close agreement with the stoichiometric value of 40:60. A downward shift was observed in the Raman peak positions due to a possible phonon confinement effect in the nanoparticles formed in bursting mechanism. Such single junction devices exhibit promising photovoltaic performance with fill factor and conversion efficiency of 21% and 0.2%, respectively, under concentrated AM1.5 illumination.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fine powders of beta-Ga2O3 nanostructures were prepared via low temperature reflux condensation method by varying the pH value without using any surfactant. The pH value of reaction mixture had great influence on the morphology of final products. High crystalline single phase beta-Ga2O3 nanostructures were obtained by thermal treatment at 900 degrees C which was confirmed by X-ray diffraction and Raman spectroscopy. The morphological analysis revealed rod like nanostructures at lower and higher pH values of 6 and 10, while spindle like structures were obtained at pH = 8. The phase purity and presence of vibrational bands were identified using Fourier transform infrared spectroscopy. The optical absorbance spectrum showed intense absorption features in the UV spectral region. A broad blue emission peak centered at 441 nm due to donor-acceptor gallium-oxygen vacancy pair recombination appeared. The photocatalytic activity toward Rhodamine B under visible light irradiation was higher for nanorods at pH 10.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Poorly crystalline porous delta-MnO2 is synthesized by hydrothermal route from a neutral aqueous solution of KMnO4 at 180 degrees C and the reaction time of 24 h. The as-synthesized sample and also the sample heated at 300 degrees C have nanopetals morphology with large surface area. On heating at temperatures 400 degrees C, there is a decrease in BET surface area and also a change in morphology from nanopetals to clusters of nanorods. Furthermore, the poorly crystalline delta-MnO2 converts into well crystalline alpha-MnO2 phase. The electrochemical lithium intercalation and de-intercalation studies in a non-aqueous electrolyte provide a high discharge specific capacity (275 mAh g(-1)) at a specific current of 40 mA g(-1) for the poorly crystalline delta-MnO2 samples. The rate capability is also high. There is a decrease in capacity on repeated charge-discharge cycling. The specific capacity values of the crystalline alpha-MnO2 samples are considerably less than the values of poorly crystalline delta-MnO2 samples. Thus, the hydrothermal route facilitates preparation of poorly crystalline electrochemically active porous MnO2.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Vertically aligned zinc oxide (ZnO) hierarchical nanostructures were developed by homo-epitaxial growth method using nickel as catalyst, and their physical properties were investigated and reported. ZnO nanorods grown by vapor-liquid-solid method are single crystalline and grown along the < 001 > direction, whereas the second order nano-branches are grown along the < 110 > direction. The homo-epitaxial relation between nano-branches (ZnOb) and ZnO cores (ZnOc) is found to be (110)ZnOb//(110)ZnOc and (002)ZnOb//(002)ZnOc. The simple and hierarchical nanostructures exhibited ultra-violet emission peak at 380 nm as near band edge emission of ZnO and have very weak defects related peak at 492 nm. (C) 2013 The Electrochemical Society. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ceria, because of its excellent redox behavior and oxygen storage capacity, is used as a catalyst for several technologically important reactions. In the present study, different morphologies of nano-CeO2 (rods, cubes, octahedra) were synthesized using the hydrothermal route. An ultrafast microwave-assisted method was used to efficiently attach Pt particles to the CeO2 polyhedra. These nanohybrids were tested as catalysts for the CO oxidation reaction. The CeO2/Pt catalyst with nanorods as the support was found to be the most active catalyst. XPS and IR spectroscopy measurements were carried out in order to obtain a mechanistic understanding and it was observed that the adsorbed carbonates with lower stability on the reactive planes of nanorods and cubes are the major contributor to this enhanced catalytic activity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report large scale deposition of tapered zinc oxide (ZnO) nanorods on Si(100) substrate by using newly designed metal-organic complex of zinc (Zn) as the precursor, and microwave irradiation assisted chemical synthesis as a process. The coatings are uniform and high density ZnO nanorods (similar to 1.5 mu m length) grow over the entire area (625 mm(2)) of the substrate within 1-5 min of microwave irradiation. ZnO coatings obtained by solution phase deposition yield strong UV emission. Variation of the molecular structure/molecular weight of the precursors and surfactants influence the crystallinity, morphology, and optical properties of ZnO coatings. The precursors in addition with the surfactant and the solvent are widely used to obtain desired coating on any substrate. The growth mechanism and the schematics of the growth process of ZnO coatings on Si(100) are discussed. (c) 2013 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A comparative morphological study of different ZnO nanostructures was carried out with different varying process parameters for energy harvesting. Molarity, temperature, growth duration and seed layer were such fundamental controlling parameters. The study brings out an outstanding piezoelectric coefficient (d(33)) of 44.33 pm/V for vertically aligned ZnO nanorod structures, considered as the highest reported d(33) value for any kind of ZnO nanostructures. XRD analysis confirms wurtzite nature of this nanorod structure with 0001] as preferential growth direction. Semiconducting characteristic of nanorods was determined with temperature induced I/V characterization.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report the controlled variation of luminescence of ZnO nanostructures from intense ultraviolet to bright visible light. Deliberate addition of surfactants in the reaction medium not only leads to growth anisotropy of ZnO, but also alters the luminescence property. ZnO nanoclusters comprising of very fine particles with crystallite sizes approximate to 15-22nm were prepared in a non-aqueous medium, either from a single alcohol or from their mixtures. Introduction of the aqueous solution of the surfactant helps in altering the microstructure of ZnO nanostructure to nanorods, nanodumb-bells as well as the luminescence property. The as-prepared powder material is found to be well crystallized. Defects introduced by the surfactant in aqueous medium play an important role in substantial transition in the optical luminescence. Chromaticity coordinates were found to lie in the yellow region of color space. This gives an impression of white light emission from ZnO nanocrystals, when excited by a blue laser. Oxygen vacancy is described as the major defect responsible for visible light emission as quantified by X-ray photoelectron spectroscopy and Raman analysis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Various morphologies of Eu3+ activated gadolinium oxide have been prepared by hydrothermal method using hexadecylamine (HDA) as surfactant at different experimental conditions. The powder X-ray diffraction studies reveal as-formed product is hexagonal Gd(OH)(3):Eu3+ phase and subsequent heat treatment at 350 and 600 degrees C transforms to monoclinic GdOOH:Eu3+ and cubic Gd2O3:Eu3+ phases respectively. SEM pictures of without surfactant show irregular shaped rods along with flakes. However, in the presence of HDA surfactant, the particles are converted into rods of various sizes. The temperature dependent morphological evolution of Gd2O3:Eu3+ without and with HDA surfactant is studied. TEM micrographs of Gd(OH)(3):Eu3+ sample with HDA confirms smooth nanorods with various diameters in the range 20-100 nm. FTIR studies reveal that HDA surfactant plays an important role in conversion of cubic to hexagonal phases. Among these three phases, cubic phase Gd2O3:Eu3+ (lambda(ex) = 254 nm) show red emission at 612 nm corresponding to D-5(0)-> F-7(2) and is more efficient host than the monoclinic counterpart. The band gap for hexagonal Gd(OH)(3):Eu3+ is more when compared to monoclinic GdOOH:Eu3+ and cubic Gd2O3:Eu3+. (C) 2013 Elsevier B. V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Detection of pathogens from infected biological samples through conventional process involves cell lysis and purification. The main objective of this work is to minimize the time and sample loss, as well as to increase the efficiency of detection of biomolecules. Electrical lysis of medical sample is performed in a closed microfluidic channel in a single integrated platform where the downstream analysis of the sample is possible. The device functions involve, in a sequence, flow of lysate from lysis chamber passed through a thermal denaturation counter where dsDNA is denatured to ssDNA, which is controlled by heater unit. A functionalized binding chamber of ssDNA is prepared by using ZnO nanorods as the matrix and functionalized with bifunctional carboxylic acid, 16-(2-pyridyldithiol) hexadecanoic acid (PDHA) which is further attached to a linker molecule 1-ethyl-3-(3-dimethylaminopropyl) (EDC). Linker moeity is then covalently bound to photoreactive protoporphyrin (PPP) molecule. The photolabile molecule protoporphyrin interacts with -NH2 labeled single stranded DNA (ssDNA) which thus acts as a probe to detect complimentary ssDNA from target organisms. Thereafter the bound DNA with protoporphyrin is exposed to an LED of particular wavelength for a definite period of time and DNA was eluted and analyzed. UV/Vis spectroscopic analysis at 260/280 nm wavelength confirms the purity and peak at 260 nm is reconfirmed for the elution of target DNA. Quantitative and qualitative data obtained from the current experiments show highly selective detection of biomolecule such as DNA which have large number of future applications in Point-of-Care devices.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Vertically aligned zinc oxide nanorods (ZnO NRs) were synthesized on kapton flexible sheets using a simple and cost-effective three-step process (electrochemical seeding, annealing under ambient conditions, and chemical solution growth). Scanning electron microscopy studies reveal that ZnO NRs grown on seed-layers, developed by electrochemical deposition at a negative potential of 1.5 V over a duration of 2.5 min and annealed at 200 degrees C for 2 h, consist of uniform morphology and good chemical stoichiometry. Transmission electron microscopy analyses show that the as-grown ZnO NRs have single crystalline hexagonal structure with a preferential growth direction of < 001 >. Highly flexible p-n junction diodes fabricated by using p-type conductive polymer exhibited excellent diode characteristics even under the fold state.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two different soft-chemical, self-assembly-based solution approaches are employed to grow zinc oxide (ZnO) nanorods with controlled texture. The methods used involve seeding and growth on a substrate. Nanorods with various aspect ratios (1-5) and diameters (15-65 nm) are grown. Obtaining highly oriented rods is determined by the way the substrate is mounted within the chemical bath. Furthermore, a preheat and centrifugation step is essential for the optimization of the growth solution. In the best samples, we obtain ZnO nanorods that are almost entirely oriented in the (002) direction; this is desirable since electron mobility of ZnO is highest along this crystallographic axis. When used as the buffer layer of inverted organic photovoltaics (I-OPVs), these one-dimensional (1D) nanostructures offer: (a) direct paths for charge transport and (b) high interfacial area for electron collection. The morphological, structural, and optical properties of ZnO nanorods are studied using scanning electron microscopy, X-ray diffraction, and ultraviolet-visible light (UV-vis) absorption spectroscopy. Furthermore, the surface chemical features of ZnO films are studied using X-ray photoelectron spectroscopy and contact angle measurements. Using as-grown ZnO, inverted OPVs are fabricated and characterized. For improving device performance, the ZnO nanorods are subjected to UV-ozone irradiation. UV-ozone treated ZnO nanorods show: (i) improvement in optical transmission, (ii) increased wetting of active organic components, and (iii) increased concentration of Zn-O surface bonds. These observations correlate well with improved device performance. The devices fabricated using these optimized buffer layers have an efficiency of similar to 3.2% and a fill factor of 0.50; this is comparable to the best I-OPVs reported that use a P3HT-PCBM active layer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oxidation of small organic molecules in a fuel cell is a viable method for energy production. However, the key issue is the development of suitable catalysts that exhibit high efficiencies and remain stable during operation. Here, we demonstrate that amine-modified ZnO nanorods on which ultrathin Au nanowires are grown act as an excellent catalyst for the oxidation of ethanol. We show that the modification of the ZnO nanorods with oleylamine not only modifies the electronic structure favorably but also serves to anchor the Au nanowires on the nanorods. The adsorption of OH- species on the Au nanowires that is essential for ethanol oxidation is facilitated at much lower potentials as compared to bare Au nanowires leading to high activity. While ZnO shows negligible electrocatalytic activity under normal conditions, there is significant enhancement in the activity under light irradiation. We demonstrate a synergistic enhancement in the photoelectrocatalytic activity of the ZnO/Au nanowire hybrid and provide mechanistic explanation for this enhancement based on both electronic as well as geometric effects. The principles developed are applicable for tuning the properties of other metal/semiconductor hybrids with potentially interesting applications beyond the fuel cell application demonstrated here.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Quantum dot arrays have been projected as the material of choice for next generation displays and photodetectors. Extensive ongoing research aims at improving optical and electrical efficiencies of such devices. We report experimental results on non-local long range emission intensity enhancement and anisotropy in quantum dot assemblies induced by isolated and partially aligned gold nanoantennas. Spatially resolved photoluminescence clearly demonstrate that the effect is maximum, when the longitudinal surface plasmon resonance of the nanoantenna is resonant with the emission maxima of the quantum dots. We estimated the decay length of this enhancement to be similar to 2.6 mu m, which is considerably larger than the range of near field interaction of metal nanoantenna. Numerical simulations qualitatively capture the near field behavior of the nanorods but fail to match the experimentally observed non-local effects. We have suggested how strong interactions of quantum dots in the close packed assemblies, mediated by the nanoantennas, could lead to such observed behavior. (C) 2014 AIP Publishing LLC.