71 resultados para Modularité massive
Resumo:
Understanding Neoproterozoic crustal evolution is fundamental to reconstructing the Gondwana supercontinent, which was assembled at this time. Here we report evidence of Cryogenian crustal reworking in the Madurai Block of the Southern Granulite Terrane of India. The study focuses on a garnet-bearing granite-charnockite suite, where the granite shows in situ dehydration into patches and veins of incipient charnockite along the contact with charnockite. The granite also carries dismembered layers of Mg-Al-rich granulite. Micro-textural evidence for dehydration of granite in the presence of CO2-rich fluids includes the formation of orthopyroxene by the breakdown of biotite, neoblastic zircon growth in the dehydration zone, at around 870 degrees C and 8kbar. The zircon U-Pb ages suggest formation of the granite, charnockite, and incipient charnockite at 836 +/- 73, 831 +/- 31, and 772 +/- 49Ma, respectively. Negative zircon epsilon Hf (t) (-5 to -20) values suggest that these rocks were derived from a reworked Palaeoproterozoic crustal source. Zircon grains in the Mg-Al-rich granulite record a spectrum of ages from ca. 2300 to ca. 500Ma, suggesting multiple provenances ranging from Palaeoproterozoic to mid-Neoproterozoic, with neoblastic zircon growth during high-temperature metamorphism in the Cambrian. We propose that the garnet-bearing granite and charnockite reflect the crustal reworking of aluminous crustal material indicated by the presence of biotite+quartz+aluminosilicate inclusions in the garnet within the granite. This crustal source can be the Mg-Al-rich layers carried by the granite itself, which later experienced high-temperature regional metamorphism at ca. 550Ma. Our model also envisages that the CO2 which dehydrated the garnet-bearing granite generating incipient charnockite was sourced from the proximal massive charnockite through advection. These Cryogenian crustal reworking events are related to prolonged tectonic activities prior to the final assembly of the Gondwana supercontinent.
Resumo:
Sheet-like clouds are common in turbulent gas and perhaps form via collisions between turbulent gas flows. Having examined the evolution of an isothermal shocked slab in an earlier contribution, in this work we follow the evolution of a sheet-like cloud confined by (thermal) pressure and gas in it is allowed to cool. The extant purpose of this endeavour is to study the early phases of core-formation. The observed evolution of this cloud supports the conjecture that molecular clouds themselves are three-phase media (comprising viz. a stable cold and warm medium, and a third thermally unstable medium), though it appears, clouds may evolve in this manner irrespective of whether they are gravitationally bound. We report, this sheet fragments initially due to the growth of the thermal instability (TI) and some fragments are elongated, filament-like. Subsequently, relatively large fragments become gravitationally unstable and sub-fragment into smaller cores. The formation of cores appears to be a three stage process: first, growth of the TI leads to rapid fragmentation of the slab; second, relatively small fragments acquire mass via gas-accretion and/or merger and third, sufficiently massive fragments become susceptible to the gravitational instability and sub-fragment to form smaller cores. We investigate typical properties of clumps (and smaller cores) resulting from this fragmentation process. Findings of this work support the suggestion that the weak velocity field usually observed in dense clumps and smaller cores is likely seeded by the growth of dynamic instabilities. Simulations were performed using the smooth particle hydrodynamics algorithm.
Resumo:
The rapid emergence of infectious diseases calls for immediate attention to determine practical solutions for intervention strategies. To this end, it becomes necessary to obtain a holistic view of the complex hostpathogen interactome. Advances in omics and related technology have resulted in massive generation of data for the interacting systems at unprecedented levels of detail. Systems-level studies with the aid of mathematical tools contribute to a deeper understanding of biological systems, where intuitive reasoning alone does not suffice. In this review, we discuss different aspects of hostpathogen interactions (HPIs) and the available data resources and tools used to study them. We discuss in detail models of HPIs at various levels of abstraction, along with their applications and limitations. We also enlist a few case studies, which incorporate different modeling approaches, providing significant insights into disease. (c) 2013 Wiley Periodicals, Inc.
Resumo:
In recent times, zebrafish has garnered lot of popularity as model organism to study human cancers. Despite high evolutionary divergence from humans, zebrafish develops almost all types of human tumors when induced. However, mechanistic details of tumor formation have remained largely unknown. Present study is aimed at analysis of repertoire of kinases in zebrafish proteome to provide insights into various cellular components. Annotation using highly sensitive remote homology detection methods revealed ``substantial expansion'' of Ser/Thr/Tyr kinase family in zebrafish compared to humans, constituting over 3% of proteome. Subsequent classification of kinases into subfamilies revealed presence of large number of CAMK group of kinases, with massive representation of PIM kinases, important for cell cycle regulation and growth. Extensive sequence comparison between human and zebrafish PIM kinases revealed high conservation of functionally important residues with a few organism specific variations. There are about 300 PIM kinases in zebrafish kinome, while human genome codes for only about 500 kinases altogether. PIM kinases have been implicated in various human cancers and are currently being targeted to explore their therapeutic potentials. Hence, in depth analysis of PIM kinases in zebrafish has opened up new avenues of research to verify the model organism status of zebrafish.
Resumo:
In this paper we calculate the escape fraction (f(esc)) of ionizing photons from starburst galaxies. Using 2D axisymmetric hydrodynamic simulations, we study superbubbles created by overlapping supernovae in OB associations. We calculate the escape fraction of ionizing photons from the centre of the disc along different angles through the superbubble and the gas disc. After convolving with the luminosity function of OB associations, we show that the ionizing photons escape within a cone of similar to 40 degrees, consistent with observations of nearby galaxies. The evolution of the escape fraction with time shows that it falls initially as cold gas is accumulated in a dense shell. After the shell crosses a few scaleheights and fragments, the escape fraction through the polar regions rises again. The angle-averaged escape fraction cannot exceed similar to1 - cos (1 rad)] = 0.5 from geometrical considerations (using the emission cone opening angle). We calculate the dependence of the time-and angle-averaged escape fraction on the mid-plane disc gas density (in the range n(0) = 0.15-50 cm(-3)) and the disc scaleheight (between z(0) = 10 and 600 pc). We find that the escape fraction is related to the disc parameters (the mid-plane disc density and scaleheight) roughly so that f(esc)(alpha)n(0)(2)z(0)(3) (with alpha approximate to 2.2) is a constant. For discs with a given warm neutral medium temperature, massive discs have lower escape fraction than low-mass galaxies. For Milky Way ISM parameters, we find f(esc) similar to 5 per cent, and it increases to approximate to 10 per cent for a galaxy 10 times less massive. We discuss the possible effects of clumpiness of the ISM on the estimate of the escape fraction and the implications of our results for the reionization of the Universe.
Resumo:
Using high-resolution 3D and 2D (axisymmetric) hydrodynamic simulations in spherical geometry, we study the evolution of cool cluster cores heated by feedback-driven bipolar active galactic nuclei (AGNs) jets. Condensation of cold gas, and the consequent enhanced accretion, is required for AGN feedback to balance radiative cooling with reasonable efficiencies, and to match the observed cool core properties. A feedback efficiency (mechanical luminosity approximate to epsilon(M) over dot(acc)c(2); where (M) over dot(acc). is the mass accretion rate at 1 kpc) as small as 6 x 10(-5) is sufficient to reduce the cooling/accretion rate by similar to 10 compared to a pure cooling flow in clusters (with M-200 less than or similar to 7 x 10(14) M-circle dot). This value is much smaller compared to the ones considered earlier, and is consistent with the jet efficiency and the fact that only a small fraction of gas at 1 kpc is accreted onto the supermassive black hole (SMBH). The feedback efficiency in earlier works was so high that the cluster core reached equilibrium in a hot state without much precipitation, unlike what is observed in cool-core clusters. We find hysteresis cycles in all our simulations with cold mode feedback: condensation of cold gas when the ratio of the cooling-time to the free-fall time (t(cool)/t(ff)) is less than or similar to 10 leads to a sudden enhancement in the accretion rate; a large accretion rate causes strong jets and overheating of the hot intracluster medium such that t(cool)/t(ff) > 10; further condensation of cold gas is suppressed and the accretion rate falls, leading to slow cooling of the core and condensation of cold gas, restarting the cycle. Therefore, there is a spread in core properties, such as the jet power, accretion rate, for the same value of core entropy t(cool)/t(ff). A smaller number of cycles is observed for higher efficiencies and for lower mass halos because the core is overheated to a longer cooling time. The 3D simulations show the formation of a few-kpc scale, rotationally supported, massive (similar to 10(11) M-circle dot) cold gas torus. Since the torus gas is not accreted onto the SMBH, it is largely decoupled from the feedback cycle. The radially dominant cold gas (T < 5 x 10(4) K; vertical bar v(r)vertical bar >vertical bar v(phi vertical bar)) consists of fast cold gas uplifted by AGN jets and freely infalling cold gas condensing out of the core. The radially dominant cold gas extends out to 25 kpc for the fiducial run (halo mass 7 x 10(14) M-circle dot and feedback efficiency 6 x 10(-5)), with the average mass inflow rate dominating the outflow rate by a factor of approximate to 2. We compare our simulation results with recent observations.
Resumo:
We study the diffuse X-ray luminosity (L-X) of star-forming galaxies using two-dimensional axisymmetric hydrodynamical simulations and analytical considerations of supernovae-(SNe-) driven galactic outflows. We find that the mass loading of the outflows, a crucial parameter for determining the X-ray luminosity, is constrained by the availability of gas in the central star-forming region, and a competition between cooling and expansion. We show that the allowed range of the mass loading factor can explain the observed scaling of L-X with star formation rate (SFR) as L-X alpha SFR2 for SFR greater than or similar to 1 M-circle dot yr(-1), and a flatter relation at low SFRs. We also show that the emission from the hot circumgalactic medium (CGM) in the halo of massive galaxies can explain the large scatter in the L-X-SFR relation for low SFRs (less than or similar to few M-circle dot yr(-1)). Our results suggest that galaxies with small SFRs and large diffuse X-ray luminosities are excellent candidates for the detection of the elusive CGM.
Resumo:
Natural disasters pose a threat to isolated populations of species with restricted distributions, especially those inhabiting islands. The Nicobar long tailed macaque. Macaca fascicularis umbrosus, is one such species found in the three southernmost islands (viz. Great Nicobar, Little Nicobar and Katchal) of the Andaman and Nicobar archipelago, India. These islands were hit by a massive tsunami (Indian Ocean tsunami, 26 December 2004) after a 9.2 magnitude earthquake. Earlier studies Umapathy et al. 2003; Sivakumar, 2004] reported a sharp decline in the population of M. f. umbrosus after thetsunami. We studied the distribution and population status of M. f. umbrosus on thethree Nicobar Islands and compared our results with those of the previous studies. We carried out trail surveys on existing paths and trails on three islands to get encounter rate as measure of abundance. We also checked the degree of inundation due to tsunami by using Normalized Difference Water Index (NDWI) on landsat imageries of the study area before and after tsunami. Theencounter rate of groups per kilometre of M. f. umbrosus in Great Nicobar, Little Nicobar and Katchal was 0.30, 0.35 and 0.48 respectively with the mean group size of 39 in Great Nicobar and 43 in Katchal following the tsunami. This was higher than that reported in the two earlier studies conducted before and after the tsunami. Post tsunami, there was a significant change in the proportion of adult males, adult females and immatures, but mean group size did not differ as compared to pre tsunami. The results show that population has recovered from a drastic decline caused by tsunami, but it cannot be ascertained whether it has reached stability because of the altered group structure. This study demonstrates the effect of natural disasters on island occurring species.
Resumo:
Since streaming data keeps coming continuously as an ordered sequence, massive amounts of data is created. A big challenge in handling data streams is the limitation of time and space. Prototype selection on streaming data requires the prototypes to be updated in an incremental manner as new data comes in. We propose an incremental algorithm for prototype selection. This algorithm can also be used to handle very large datasets. Results have been presented on a number of large datasets and our method is compared to an existing algorithm for streaming data. Our algorithm saves time and the prototypes selected gives good classification accuracy.
Resumo:
We have addressed the question of whether the massive deficit of 42% in rainfall over the Indian region in June 2014 can be attributed primarily to the El Nino. We have shown that the variation of convection over the Northern part of the Tropical West Pacific (NWTP: 120-150E, 20-30N) plays a major role in determining the all-India rainfall in June with deficit (excess) in rainfall associated with enhancement (suppression) of convection over NWTP. In June 2014, the outgoing long wave radiation (OLR) anomaly over this region was unfavourable, whereas in June 2015, the OLR anomaly over NWTP was favourable and the all-India rainfall was 16% higher than the long-term average. We find that during El Nino, when the convection over the equatorial central Pacific intensifies, there is a high propensity for intensification of convection over NWTP. Thus, El Nino appears to have an impact on the rainfall over the Indian region via its impact on the convection over the West Pacific, particularly over NWTP. This occurred in June 2014, which suggests that the large deficit in June 2014, could be primarily attributed to the El Nino acting via intensification of convection over NWTP.
Resumo:
A metastable nano-scale disordered precipitate with orthorhombic symmetry has been identified using high resolution scanning transmission electron microscopy. The phase, termed O', is metastable, formed by a shuffle mechanism involving a {110}<1<(1)over bar>0> transverse phonon wave in samples of Ti-26Nb-2Zr (at.%) quenched from the beta phase. The addition of 2% Zr to Ti-26Nb appears to suppress significantly the stability of both the {11 (2) over bar}<111> shear and 2/3 <111> longitudinal phonon wave but promotes the {110}<1<(1)over bar>0> transverse shuffle. This results in the nano-size O' phase being homogeneously formed in the parent beta phase matrix rather than the massive alpha `' phase. (C) 2016 Elsevier B.V. All rights reserved.