94 resultados para Mice, Mutant Strains
Resumo:
Polycyclic aromatic molecules such as ellipticine intercalate into double-stranded DNA and interfere with physiological functions. In the present study, we evaluate the chemotherapeutic potential of MPTQ on animal models and its mode of action. In order to test the antitumor activity, monohydrochloride of MPTQ was orally administered in mice bearing tumor. Results showed a significant inhibition of tumor growth compared to that of untreated controls. More importantly, mean lifespan of tumor bearing animals treated with MPTQ was significantly higher as compared to that of untreated tumor bearing mice suggesting that the treatment affected viability of cancerous cells, but not of normal cells. Consistent with this, we find that administration of MPTQ to normal mice did not cause any major side effects as observed upon hematological and serum profiling. We also found that MPTQ induces cytotoxicity in cancer cell lines, by activating apoptosis both by intrinsic and extrinsic pathways. Thus, MPTQ could be used as a potential cancer therapeutic agent.
Resumo:
The success of AAV2 mediated hepatic gene transfer in human trials for diseases such as hemophilia has been hampered by a combination of low transduction efficiency and a robust immune response directed against these vectors. We have previously shown that AAV2 is targeted for destruction in the cytoplasm by the host-cellular kinase/ubiquitination/proteasomal degradation machinery and modification of the serine(S)/threonine(T) kinase and lysine(K) targets on AAV capsid is beneficial. Thus targeted single mutations of S/T>A(S489A, S498A, T251A) and K>R (K532R) improved the efficiency of gene transfer in vivo as compared to wild type (WT)-AAV2 vectors (∼6-14 fold). In the present study, we evaluated if combined alteration of the phosphodegrons (PD), which are the phosphorylation sites recognized as degradation signals by ubiquitin ligases, improves further the gene transfer efficiency. Thus, we generated four multiple mutant vectors (PD: 1+3, S489A+K532R, PD: 1+3, S489A+K532R together with T251 residue which did not lie in any of the phosphodegrons but had shown increased transduction efficiency compared to the WT-AAV2 vector (∼6 fold) and was also conserved in 9 out of 10 AAV serotypes (AAV 1 to 10), PD: 1+3, S489A+K532R+S498A and a fourth combination of PD: 3, K532R+T251. We then evaluated them in vitro and in vivo and compared their gene transfer efficiency with either the WT-AAV2 or the best single mutant S489A-AAV2 vector. The novel multiple mutations on the AAV2 capsid did not affect the overall vector packaging efficiency. All the multiple AAV2 mutants showed superior transduction efficiency in HeLa cells in vitro when compared to either the WT (62-72% Vs 21%) or the single mutant S489A (62-72% Vs 50%) AAV2 vectors as demonstrated by FACS analysis (Fig. 1A). On hepatic gene transfer with 5x10^10 vgs per animal in C57BL/6 mice, all the multiple mutants showed increased transgene expression compared to either the WT-AAV2 (∼15-23 fold) or the S489A single mutant vector (∼2-3 fold) (Fig.1B and C). These novel multiple mutant AAV2 vectors also showed higher vector copy number in murine hepatocytes 4 weeks post transduction, as compared to the WT-AAV2 (∼5-6 Vs 1.4 vector copies/diploid genome) and further higher when compared to the single mutant S489A(∼5-6 fold Vs 3.8 fold) (Fig.1D). Further ongoing studies will demonstrate the therapeutic benefit of one or more of the multiple mutants vectors in preclinical models of hemophilia.
Resumo:
While phosphotyrosine modification is an established regulatory mechanism in eukaryotes, it is less well characterized in bacteria due to low prevalence. To gain insight into the extent and biological importance of tyrosine phosphorylation in Escherichia coli, we used immunoaffinity-based phosphotyrosine peptide enrichment combined with high resolution mass spectrometry analysis to comprehensively identify tyrosine phosphorylated proteins and accurately map phosphotyrosine sites. We identified a total of 512 unique phosphotyrosine sites on 342 proteins in E. coli K12 and the human pathogen enterohemorrhagic E. coli (EHEC) O157:H7, representing the largest phosphotyrosine proteome reported to date in bacteria. This large number of tyrosine phosphorylation sites allowed us to define five phosphotyrosine site motifs. Tyrosine phosphorylated proteins belong to various functional classes such as metabolism, gene expression and virulence. We demonstrate for the first time that proteins of a type III secretion system (T3SS), required for the attaching and effacing (A/E) lesion phenotype characteristic for intestinal colonization by certain EHEC strains, are tyrosine phosphorylated by bacterial kinases. Yet, A/E lesion and metabolic phenotypes were unaffected by the mutation of the two currently known tyrosine kinases, Etk and Wzc. Substantial residual tyrosine phosphorylation present in an etk wzc double mutant strongly indicated the presence of hitherto unknown tyrosine kinases in E. coli. We assess the functional importance of tyrosine phosphorylation and demonstrate that the phosphorylated tyrosine residue of the regulator SspA positively affects expression and secretion of T3SS proteins and formation of A/E lesions. Altogether, our study reveals that tyrosine phosphorylation in bacteria is more prevalent than previously recognized, and suggests the involvement of phosphotyrosine-mediated signaling in a broad range of cellular functions and virulence.
Resumo:
In the search for more efficacious and less toxic cancer drugs, the tumor suppressor p53 protein has long been a desirable therapeutic target. In the recent past, few independent studies have demonstrated that the antitumor activity of wild-type p53 can be restored in cancer cells harboring mutant form of p53 using small molecule activators. In this study, we describe a novel small molecule MPK-09, which is selective and highly potent against allele specific p53 mutations mainly, R175H, R249S, R273H, R273C, and E285K. Except E285K, all other mutations tested are among the six ``hot spot'' p53 mutations reported in majority of human cancer. Furthermore, our study conclusively demonstrates that the apoptotic activity of the small molecule MPK-09 against cancer cells harboring R273C and E285K mutations is due to restoration of the wild-type conformation to the corresponding mutant form of p53.
Resumo:
The conserved stem domain of influenza virus hemagglutinin (HA) is a target for broadly neutralizing antibodies and a potential vaccine antigen for induction of hetero-subtypic protection. The epitope of 12D1, a previously reported bnAb neutralizing several H3 subtype influenza strains, was putatively mapped to residues 76-106 of the CD-helix, also referred to as long alpha helix (LAH) of the HA stem. A peptide derivative consisting of wt-LAH residues 76-130 conjugated to keyhole limpet hemocyanin was previously shown to confer robust protection in mice against challenge with influenza strains of subtypes H3, H1, and H5 which motivated the present study. We report the design of multiple peptide derivatives of LAH with or without heterologous trimerization sequences and show that several of these are better folded than wt-LAH. However, in contrast to the previous study immunization of mice with wt-LAH resulted in negligible protection against a lethal homologous virus challenge, while some of the newly designed immunogens could confer weak protection. Combined with structural analysis of HA, our data suggest that in addition to LAH, other regions of HA are likely to significantly contribute to the epitope for 12D1 and will be required to elicit robust protection. In addition, a dynamic, flexible conformation of isolated LAH peptide may be required for eliciting a functional anti-viral response. Proteins 2013; 81:1759-1775. (c) 2013 Wiley Periodicals, Inc.
Resumo:
Seleno-organic glutathione peroxidase (GPx) mimetics, including ebselen (Eb), have been tested in in vitro studies for their ability to scavenge reactive oxygen and nitrogen species, including hydrogen peroxide and peroxynitrite. In this study, we investigated the efficacies of two Eb analogues, m-hydroxy ebselen (ME) and ethanol-ebselen (EtE) and compared these with Eb in cell based assays. We found that ME is superior in attenuating the activation of hydrogen peroxide-induced pro-inflammatory mediators, ERK and P38 in human aortic endothelial cells. Consequently, we investigated the effects of ME in an in vivo model of diabetes, the ApoE/GPx1 double knockout (dKO) mouse. We found that ME attenuates plaque formation in the aorta and lesion deposition within the aortic sinus of diabetic dKO mice. Oxidative stress as assessed by 8-OHdG in urine and nitrotyrosine immunostaining in the aortic sinus and kidney tubules, was reduced by ME in diabetic dKO mice. ME also attenuated diabetes-associated renal injury which included tubulointerstitial fibrosis and glomerulosclerosis. Furthermore, the bioactivity of the pro-fibrotic cytokine transforming growth factor-beta (TGF-beta) as assessed by phospho-Smad2/3 immunostaining was attenuated after treatment with ME. TGF-beta-stimulated increases in collagen I and IV gene expression and protein levels were attenuated by ME in rat kidney tubular cells. However, in contrast to the superior activity of ME in in vitro and cell based assays, ME did not further augment the attenuation of diabetes-associated atherosclerosis and renal injury in our in vivo model when compared with Eb. In conclusion, this study strengthens the notion that bolstering GPx-like activity using synthetic mimetics may be a useful therapeutic strategy in lessening the burden of diabetic complications. However, these studies highlight the importance of in vivo analyses to test the efficacies of novel Eb analogues, as in vitro and cell based assays are only partly predictive of the in vivo situation.
Resumo:
Objective: The present study was undertaken to evaluate the antitumor and antioxidant status of ethanol extract of Terminalia catappa leaves against Ehrlich ascites carcinoma (EAC) in Swiss albino mice. Materials and Methods: The leaves powder was extracted with Soxhlet apparatus and subjected to hot continuous percolation using ethanol (95% v/v). Tumor bearing animals was treated with 50 and 200 mg/kg of ethanol extract. EAC induced in mice by intraperitoneal injection of EAC cells 1 x 10(6) cells/mice. The study was assed using life span of EAC-bearing hosts, hematological parameters, volume of solid tumor mass and status of antioxidant enzymes such as lipid peroxidation (LPO), reduced glutathione (GSH), superoxide dismutase (SOD) and catalase (CAT) activities. Total phenolics and flavonoids contents from the leaves extract were also determined. Results: Total phenolics and flavonoids contents from the leaves extract were found 354.02 and 51.67 mg/g extract. Oral administration of ethanol extract of T. catappa (50 and 200 mg/kg) increased the life span (27.82% and 60.59%), increased peritoneal cell count (8.85 +/- 0.20 and 10.37 +/- 0.26) and significantly decreased solid tumor mass (1.16 +/- 0.14 cm(2)) at 200 mg/kg as compared with EAC-tumor bearing mice (P < 0.01). Hematological profile including red blood cell count, white blood cell count, hemoglobin (11.91 +/- 0.47 % g) and protein estimation were found to be nearly normal levels in extract-treated mice compared with tumor bearing control mice. Treatment with T. catappa significantly decreased levels of LPO and GSH, and increased levels of SOD and CAT activity (P < 0.01). Conclusion: T. catappa exhibited antitumor effect by modulating LPO and augmenting antioxidant defense systems in EAC bearing mice. The phenolic and flavonoid components in this extract may be responsible for antitumor activity.
Resumo:
The selective flotation of sphalerite from a sphalerite-galena mineral mixture has been achieved using cells and extracellular secretions of Bacillus megaterium after adaptation to the chosen minerals. The extracellular secretions obtained after thermolysis of bacterial cells adapted to sphalerite yield the highest flotation recovery of sphalerite with a selectivity index value of 24.5, in comparison to the other cellular and extra-cellular bio-reagents studied. The protein profile for the unadapted and mineral-adapted cells has been found to differ distinctly, attesting to variation in the yield and nature of extra-cellular polymeric substances (EPS). The changes induced in the bacterial cell wall components after adaptation to sphalerite or galena with respect to the contents of phosphate, uronic acid and acetylated sugars of B. megaterium have been quantified. The role of the dissolved metal ions from the minerals as well as that of the constituents of extracellular secretions in modulating the surface charge of the bacterial cells as well as the minerals under study has been confirmed using various enzymatic treatments of the bacterial cells. It has been demonstrated that the induction of additional molecular weight protein fractions as well as the higher amount of extracellular proteins and phosphate secreted after adaptation to sphalerite vis-A-vis galena are contributory factors for the selective separation of sphalerite from galena. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
With the development of deep sequencing methodologies, it has become important to construct site saturation mutant (SSM) libraries in which every nucleotide/codon in a gene is individually randomized. We describe methodologies for the rapid, efficient, and economical construction of such libraries using inverse polymerase chain reaction (PCR). We show that if the degenerate codon is in the middle of the mutagenic primer, there is an inherent PCR bias due to the thermodynamic mismatch penalty, which decreases the proportion of unique mutants. Introducing a nucleotide bias in the primer can alleviate the problem. Alternatively, if the degenerate codon is placed at the 5' end, there is no PCR bias, which results in a higher proportion of unique mutants. This also facilitates detection of deletion mutants resulting from errors during primer synthesis. This method can be used to rapidly generate SSM libraries for any gene or nucleotide sequence, which can subsequently be screened and analyzed by deep sequencing. (C) 2013 Elsevier Inc. All rights reserved.
Resumo:
Many aspects of skeletal muscle biology are remarkably similar between mammals and tiny insects, and experimental models of mice and flies (Drosophila) provide powerful tools to understand factors controlling the growth, maintenance, degeneration (atrophy and necrosis), and regeneration of normal and diseased muscles, with potential applications to the human condition. This review compares the limb muscles of mice and the indirect flight muscles of flies, with respect to the mechanisms of adult myofiber formation, homeostasis, atrophy, hypertrophy, and the response to muscle degeneration, with some comment on myogenic precursor cells and common gene regulatory pathways. There is a striking similarity between the species for events related to muscle atrophy and hypertrophy, without contribution of any myoblast fusion. Since the flight muscles of adult flies lack a population of reserve myogenic cells (equivalent to satellite cells), this indicates that such cells are not required for maintenance of normal muscle function. However, since satellite cells are essential in postnatal mammals for myogenesis and regeneration in response to myofiber necrosis, the extent to which such regeneration might be possible in flight muscles of adult flies remains unclear. Common cellular and molecular pathways for both species are outlined related to neuromuscular disorders and to age-related loss of skeletal muscle mass and function (sarcopenia). The commonality of events related to skeletal muscles in these disparate species (with vast differences in size, growth duration, longevity, and muscle activities) emphasizes the combined value and power of these experimental animal models.
Resumo:
The paper proposes a non-destructive method for simultaneous measurement of in-plane and out-of-plane displacements and strains undergone by a deformed specimen from a single moire fringe pattern obtained on the specimen in a dual beam digital holographic interferometry setup. The moire fringe pattern encodes multiple interference phases which carry the information on multidimensional deformation. The interference field is segmented in each column and is modeled as multicomponent quadratic/cubic frequency-modulated signal in each segment. Subsequently, the product form of modified cubic phase function is used for accurate estimation of phase parameters. The estimated phase parameters are further utilized for direct estimation of the unwrapped interference phases and phase derivatives. The simulation and experimental results are provided to validate the effectiveness of the proposed method.
Resumo:
Staphylococcus aureus is a commensal gram positive bacteria which causes severe and non severe infections in humans and livestock. In India, ST772 is a dominant and ST672 is an emerging clone of Staphylococcus aureus. Both cause serious human diseases, and carry type V SCCmec elements. The objective of this study was to characterize SCCmec type V elements of ST772 and ST672 because the usual PCR methods did not amplify all primers specific to the type. Whole genome sequencing analysis of seven ST772 and one ST672 S. aureus isolates revealed that the SCCmec elements of six of the ST772 isolates were the smallest of the extant type V elements and in addition have several other novel features. Only one ST772 isolate and the ST672 isolate carried bigger SCCmec cassettes which were composites carrying multiple ccrC genes. These cassettes had some similarities to type V SCCmec element from M013 isolate (ST59) from Taiwan in certain aspects. SCCmec elements of all Indian isolates had an inversion of the mec complex, similar to the bovine SCCmec type X. This study reveals that six out of seven ST772 S. aureus isolates have a novel type V (5C2) SCCmec element while one each of ST772 and ST672 isolates have a composite SCCmec type V element (5C2&5) formed by the integration of type V SCCmec into a MSSA carrying a SCC element, in addition to the mec gene complex inversions and extensive recombinations.
Resumo:
Reverse osmosis (RO) membranes have been used extensively in water desalination plants, waste water treatment in industries, agricultural farms and drinking water production applications. The objective of this work is to impart antibacterial and antifungal activities to commercially available RO membrane used in water purification systems by incorporating biogenic silver nanoparticles (AgNPs) synthesized using Rosa indica wichuriana hybrid leaf extract. The morphology and surface topography of uncoated and AgNPs-coated RO membrane were studied using Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM). Elemental composition of the AgNPs-coated RO membrane was analyzed by energy-dispersive X-ray spectroscopy (EDAX). The functional groups were identified by Fourier Transform Infrared spectroscopy (FT-IR). Hydrophilicity of the uncoated and AgNPs-coated RO membrane was analyzed using water contact angle measurements. The thermal properties were studied by thermogravimetric analysis (TGA). The AgNPs incorporated RO membrane exhibited good antibacterial and antifungal activities against pathogenic bacterial strains such as E. coli, S. aureus, M. luteus, K. pneumoniae, and P. aeruginosa and fungal strains such as Candida tropicalis, C. krusei, C. glabrata, and C. albicans.
Resumo:
Intake of fruits rich in antioxidants in daily diet is suggested to be cancer preventive. Sapota is a tropical fruit grown and consumed extensively in several countries including India and Mexico. Here we show that methanolic extracts of Sapota fruit (MESF) induces cytotoxicity in a dose-dependent manner in cancer cell lines. Cell cycle analysis suggested activation of apoptosis, without arresting cell cycle progression. Annexin V-propidium iodide double-staining demonstrated that Sapota fruit extracts potentiate apoptosis rather than necrosis in cancer cells. Loss of mitochondrial membrane potential, upregulation of proapoptotic proteins, activation of MCL-1, PARP-1, and Caspase 9 suggest that MESF treatment leads to activation of mitochondrial pathway of apoptosis. More importantly, we show that MESF treatment leads to significant inhibition of tumor growth and a 3-fold increase in the life span of tumor bearing animals compared to untreated tumor mice.