353 resultados para Materials tests
Resumo:
Various field test (namely vibration tests on blocks or plates, steady-state vibration or Rayleigh wave tests, wave propagation tests, and cyclic load tests) were conducted at a number of sites in India to determine the dynamic shear modulus, G. Data obtained at different sites are described. The values of G obtained from the different tests at a given site vary widely. The rational approach for selecting the value of G from field tests for use in the analysis and design of soil-structure interaction problems under dynamic loads must account for the factors affecting G. The suggested approach, which provides a possible answer, is suitable in cohesionless soils below the water table where it is rather difficult, if not impossible, to obtain undisturbed samples.
Resumo:
Separation of Mussorie rock phosphate (P2O5 = 20%) from Uttar Pradesh, India, containing pyrite, calcite and other carbonaceous impurities by flotation has been successfully attempted to upgrade the phosphate values. Based on Hallimond cell flotation results of single and synthetic mineral mixtures of calcite and apatite using oleic acid and potassium phosphate, conditions were obtained for the separation of calcite from apatite which is considered to be the most difficult step in the beneficiation of calcareous phosphates. Further studies using 250 g of the mineral (−60 +150 and −150 mesh fractions, deslimed) in laboratory size Fagergren subaeration machine employed a stagewise flotation viz. carbonaceous materials using terpineol, pyrite using potassium-ethyl xanthate and calcite using oleic acid respectively. Separation was, however, found to be unsatisfactory in the absence of a depressant. Among starch, hydrofluosilicic acid and dipotassium hydrogen phosphate, which were tried as depressants for apatite in the final flotation stage, dipotassium hydrogen phosphate proved to be superior to others. However, the tests with the above fractions did not yield the required grade. This was possibly due to insufficient liberation of the phosphate mineral from the ore body and different experimental conditions due to scale up operations. Experiments conducted using −200 mesh deslimed fractions has yielded an acceptable grade of 27.6% P2O5 with a recovery of about 60%. The results have been explained in terms of the specific adsorption characteristics of phosphate ions on apatite and the liberation size of the mineral.
Resumo:
In the present investigation, experiments were conducted on a tribological couple-copper pin against steel plate-using an inclined pin-on-plate sliding tester to understand the role of surface texture and roughness parameters of the plate on the coefficient friction and transfer layer formation. Two surface characteristics of the steel plates-roughness and texture-were varied in the tests. It was observed that the transfer layer formation and the coefficient of friction along with its two components, namely, the adhesion and plowing, are controlled by the surface texture of the plate. The plowing component of friction was highest for the surface texture that promotes plane strain conditions while it was lowest for the texture that favors plane stress conditions at the interface. Dimensionless quantifiable roughness parameters were formulated to describe the degree of plowing and hence the plane strain/stress type deformations taking place at the asperity level.
Resumo:
The tensile stress–strain response and fracture in a hypereutectic Ti–6Al–4V–1.7B (weight percent) alloy were investigated by employing interrupted tensile tests combined with acoustic emission measurements, with the aim to identify the cause for the observed low ductility in this alloy. These tests were complemented with microscopy. The alloy contains TiB whiskers of different length scales, the majority of which include micro-whiskers ( 5–10 μm length) and a few primary-whiskers ( 200–300 μm length). Although the fracture of both types of whiskers occur during deformation, the former leads to a gradual decrease in the secant modulus whereas initiation of the latter leads to a drastic drop in the modulus along with failure of the specimen, limiting the ductility.
Resumo:
We investigate the Einstein relation for the diffusivity-mobility ratio (DMR) for n-i-p-i and the microstructures of nonlinear optical compounds on the basis of a newly formulated electron dispersion law. The corresponding results for III-V, ternary and quaternary materials form a special case of our generalized analysis. The respective DMRs for II-VI, IV-VI and stressed materials have been studied. It has been found that taking CdGeAs2, Cd3As2, InAs, InSb, Hg1−xCdxTe, In1−xGaxAsyP1−y lattices matched to InP, CdS, PbTe, PbSnTe and Pb1−xSnxSe and stressed InSb as examples that the DMR increases with increasing electron concentration in various manners with different numerical magnitudes which reflect the different signatures of the n-i-p-i systems and the corresponding microstructures. We have suggested an experimental method of determining the DMR in this case and the present simplified analysis is in agreement with the suggested relationship. In addition, our results find three applications in the field of quantum effect devices.
Resumo:
This paper presents finite element analysis of laminated anisotropic beams of bimodulus materials. The finite element has 16 d.o.f. and uses the displacement field in terms of first order Hermite interpolation polynomials. As the neutral axis position may change from point to point along the length of the beam, an iterative procedure is employed to determine the location of zero strain points along the length. Using this element some problems of laminated beams of bimodulus materials are solved for concentrated loads/moments perpendicular and parallel to the layering planes as well as combined loads.
Resumo:
The damping capacity of cast graphitic aluminum alloy composites has been measured using a torsion pendulum at a constant strain amplitude. It was found that flake-graphite particles dispersed in the matrix of aluminum alloys increased the damping capacity; the improvement was greater, the higher the amount of graphite dispersed in the matrix. At sufficiently high graphite contents the damping capacity of graphitic aluminum composites approaches that of cast iron. The ratio between the damping capacity and the density of graphitic aluminum alloys is higher than cast iron, making them very attractive as light-weight, high-damping materials for possible aircraft applications. Machinability tests on graphite particle-aluminum composites, conducted at speeds of 315 sfm and 525 sfm, showed that the chip length decreased with the amount of graphite of a given size. When the size of graphite was decreased, at a given machining speed, the chip length decreased. Metallographic examination shows that graphite particles act as chip breakers, and are frequently sheared parallel to the plane of the
Resumo:
Asymmetric rolling of commercially pure magnesium was carried out at three different temperatures: room temperature, 200 degrees C and 350 degrees C. Systematic analysis of microstructures, grain size distributions, texture and misorientation distributions were performed using electron backscattered diffraction in a field emission gun scanning electron microscope. The results were compared with conventional (symmetric) rolling carried out under the same conditions of temperature and strain rate. Simulations of deformation texture evolution were performed using the viscoplastic self-consistent polycrystal plasticity model. The main trends of texture evolution are faithfully reproduced by the simulations for the tests at room temperature. The deviations that appear for the textures obtained at high temperature can be explained by the occurrence of dynamic recrystallization. Finally, the mechanisms of texture evolution in magnesium during asymmetric and symmetric rolling are explained with the help of ideal orientations, grain velocity fields and divergence maps displayed in orientation space.
Resumo:
Measurement of the chemical shifts ΔE of the K-absorption edge in both crystalline and amorphous states of several solids shows that ΔE is generally smaller in the amorphous state. More covalent solids appear to be associated with small values of ΔE.
Resumo:
This paper presents the results of a series of servo-controlled cyclic triaxial tests and numerical simulations using the three- dimensional discrete element method (DEM) on post-liquefaction undrained monotonic strength of granular materials. In a first test series,undrained monotonic tests were carried out after dissipating the excess pore water pressure developed during liquefaction. The influence of different parameters such as amplitude of axial strain,relative density and confining pressure prior to liquefaction on the post-liquefaction undrained response have been investigated.The results obtained highlight an insignificant influence of amplitude of axial strain, confining pressure and a significant influence of relative density on the post-liquefaction undrained monotonic stress-strain response.In the second series, undrained monotonic tests were carried out on similar triaxial samples without dissipating the excess pore water pressure developed during liquefaction. The results highlight that the amplitude of axial strain prior to liquefaction has a significant influence on the post-liquefaction undrained monotonic response.In addition,DEM simulations have been carried out on an assembly of spheres to simulate post-liquefaction behaviour.The simulations were very similar to the experiments with an objective to understand the behaviour of monotonic strength of liquefied samples from the grain scale. The numerical simulations using DEM have captured qualitatively all the features of the post-liquefaction undrained monotonic response in a manner similar to that of the experiments.In addition,a detailed study on the evolution of micromechanical parameters such as the average coordination number and induced anisotropic coefficients has been reported during the post-liquefaction undrained monotonic loading.
Resumo:
This paper presents the results of shaking table tests on models of rigid-faced reinforced soil retaining walls in which reinforcement materials of different tensile strength were used. The construction of the model retaining walls in a laminar box mounted on a shaking table, the instrumentation and the results from the shaking table tests are described in detail and the effects of the reinforcement parameters on the acceleration response at different elevations of the retaining wall, horizontal soil pressures and face deformations are presented. It was observed from these tests that the horizontal face displacement response of the rigid-faced retaining walls was significantly affected by the inclusion of reinforcement and even low-strength polymer reinforcement was found to be efficient in significantly reducing the deformation of the face. The acceleration amplifications were, however, observed to be less influenced by the reinforcement parameters. The results obtained from this study are helpful in understanding the relative performance of reinforced soil retaining walls under the different test conditions used in the experiments.
Resumo:
In the present investigation, tests were conducted on a tribological couple made of cylindrical lead pin with spherical tip against 080 M40 steel plates of different textures with varying roughness under both dry and lubricated conditions using an inclined pin-on-plate sliding tester. Surface roughness parameters of the steel plates were measured using optical profilometer. The morphologies of the worn surfaces of the pins and the formation of transfer layer on the counter surfaces were observed using a scanning electron microscope. It was observed that the coefficient of friction and the formation of transfer layer depend primarily on the surface texture of hard surfaces. A newly formulated non-dimensional hybrid roughness parameter called 'xi' (a product of number of peaks and maximum profile peak height) of the tool surface plays an important role in determining the frictional behaviour of the surfaces studied. The effect of surfaces texture on coefficient of friction was attributed to the variation of plowing component of friction, which in turn depends on the roughness parameter 'xi'.
Resumo:
Carbon fiber reinforced polymer (CFRP) composite specimens with different thickness, geometry, and stacking sequences were subjected to fatigue spectrum loading in stages. Another set of specimens was subjected to static compression load. On-line acoustic Emission (AE) monitoring was carried out during these tests. Two artificial neural networks, Kohonen-self organizing feature map (KSOM), and multi-layer perceptron (MLP) have been developed for AE signal analysis. AE signals from specimens were clustered using the unsupervised learning KSOM. These clusters were correlated to the failure modes using available a priori information such as AE signal amplitude distributions, time of occurrence of signals, ultrasonic imaging, design of the laminates (stacking sequences, orientation of fibers), and AE parametric plots. Thereafter, AE signals generated from the rest of the specimens were classified by supervised learning MLP. The network developed is made suitable for on-line monitoring of AE signals in the presence of noise, which can be used for detection and identification of failure modes and their growth. The results indicate that the characteristics of AE signals from different failure modes in CFRP remain largely unaffected by the type of load, fiber orientation, and stacking sequences, they being representatives of the type of failure phenomena. The type of loading can have effect only on the extent of damage allowed before the specimens fail and hence on the number of AE signals during the test. The artificial neural networks (ANN) developed and the methods and procedures adopted show significant success in AE signal characterization under noisy environment (detection and identification of failure modes and their growth).