109 resultados para Matabolism of Proteins
Resumo:
The CCEM method (Contact Criteria and Energy Minimisation) has been developed and applied to study protein-carbohydrate interactions. The method uses available X-ray data even on the native protein at low resolution (above 2.4 Å) to generate realistic models of a variety of proteins with various ligands.The two examples discussed in this paper are arabinose-binding protein (ABP) and pea lectin. The X-ray crystal structure data reported on ABP-β-l-arabinose complex at 2.8, 2.4 and 1.7 Å resolution differ drastically in predicting the nature of the interactions between the protein and ligand. It is shown that, using the data at 2.4 Å resolution, the CCEM method generates complexes which are as good as the higher (1.7 Å) resolution data. The CCEM method predicts some of the important hydrogen bonds between the ligand and the protein which are missing in the interpretation of the X-ray data at 2.4 Å resolution. The theoretically predicted hydrogen bonds are in good agreement with those reported at 1.7 Å resolution. Pea lectin has been solved only in the native form at 3 Å resolution. Application of the CCEM method also enables us to generate complexes of pea lectin with methyl-α-d-glucopyranoside and methyl-2,3-dimethyl-α-d-glucopyranoside which explain well the available experimental data in solution.
Resumo:
Distant repeats between a pair of protein sequences can be exploited to study the various aspects of proteins such as structure-function relationship, disorders due to protein malfunction, evolutionary analysis, etc. An in-depth analysis of the distant repeats would facilitate to establish a stable evolutionary relation of the repeats with respect to their three-dimensional structure. To this effect, an algorithm has been devised to identify the distant repeats in a pair of protein sequences by essentially using the scores of PAM (Percent Accepted Mutation) matrices. The proposed algorithm will be of much use to researchers involved in the comparative study of various organisms based on the amino-acid repeats in protein sequences. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Mycobacterium tuberculosis, an etiological agent of pulmonary tuberculosis, causes significant morbidity and mortality worldwide. Pathogenic mycobacteria survive in the host by subverting host innate immunity. Dendritic cells (DCs) are professional antigen-presenting cells that are vital for eliciting immune responses to infectious agents, including pathogenic mycobacteria. DCs orchestrate distinct Th responses based on the signals they receive. In this perspective, deciphering the interactions of the proline-glutamic acid/proline-proline-glutamic acid (PE/PPE) family of proteins of M. tuberculosis with DCs assumes significant pathophysiological attributes. In this study, we demonstrate that Rv1917c (PPE34), a representative member of the proline-proline-glutamic-major polymorphic tandem repeat family, interacts with TLR2 and triggers functional maturation of human DCs. Signaling perturbations implicated a critical role for integrated cross-talk among PI3K-MAPK and NF-kappa B signaling cascades in Rv1917c-induced maturation of DCs. However, this maturation of DCs was associated with a secretion of high amounts of anti-inflammatory cytokine IL-10, whereas Th1-polarizing cytokine IL-12 was not induced. Consistent with these results, Rv1917c-matured DCs favored secretion of IL-4, IL-5, and IL-10 from CD4(+) T cells and contributed to Th2-skewed cytokine balance ex vivo in healthy individuals and in patients with pulmonary tuberculosis. Interestingly, the Rv1917c-skewed Th2 immune response involved induced expression of cyclooxygenase-2 (COX-2) in DCs. Taken together, these results indicate that Rv1917c facilitates a shift in the ensuing immunity toward the Th2 phenotype and could aid in immune evasion by mycobacteria.
Resumo:
Proline plays an important role in the secondary structure of proteins. In the pursuit of understanding its structural role, Proline containing helices with constraints have been studied by employing molecular dynamics (MD) technique. In the present study, the constraint introduced is a threonine residue, whose sidechain has intramolecular hydrogen bond interaction with the backbone oxygen atom. The three systems that have been chosen for characterization are: (1) Ace-(Ala)12−Thr-Pro-(Ala)10−NHMe, (2) Ace-(Ala)13-Pro-Ala-Thr- (Ala)8-NHMe and (3) Ace-(Ala)13-Pro-(Ala)3-Thr-(Ala)6-NHMe. The equilibrium structures and structural transitions have been identified by monitoring the backbone dihedral angles, bend related parameters and the hydrogen bond interactions. The MD averages and root mean square (r.m.s.) fluctuations are compared and discussed. Energy minimization has been carried out on selected MD simulated points in order to analyze the characteristics of different conformations.
Resumo:
After ensilation, the toxic Compositae weed Parthenium hysterophorus was devoid of the toxic principle parthenin. Laboratory-scale ensilation indicated that no parthenin was detectable after 5 wk of anaerobic fermentation. For animal feeding studies, silage was made on a large scale from Parthenium mixed with maize or from Parthenium alone. Crossbred bull and buffalo bull calves were fed diets containing the silages, or control diet without silage, for 12 wk. The animals consumed both silages with relish, and body weight gains of silage-fed calves did not differ from those of the controls. The digestibilities of dry matter, fibre and nitrogen-free extract were greater with the control diet, but the biological value of proteins tended to be greater with the silage-containing diets. Haematological studies indicated no significant differences between experimental and control groups in selected parameters, except for a reduction in blood urea nitrogen in the animals fed silage. The possible causes for these biochemical alterations are discussed. Since the nutritive value of Parthenium silage compares favourably with the standard diet, and Parthenium seeds collected from the silage did not germinate, we suggest that ensilation can be used as an additional method in the containment and eradication of these plants, which grow wild in India.
Resumo:
Sequence specific resonance assignment constitutes an important step towards high-resolution structure determination of proteins by NMR and is aided by selective identification and assignment of amino acid types. The traditional approach to selective labeling yields only the chemical shifts of the particular amino acid being selected and does not help in establishing a link between adjacent residues along the polypeptide chain, which is important for sequential assignments. An alternative approach is the method of amino acid selective `unlabeling' or reverse labeling, which involves selective unlabeling of specific amino acid types against a uniformly C-13/N-15 labeled background. Based on this method, we present a novel approach for sequential assignments in proteins. The method involves a new NMR experiment named, {(CO)-C-12 (i) -N-15 (i+1)}-filtered HSQC, which aids in linking the H-1(N)/N-15 resonances of the selectively unlabeled residue, i, and its C-terminal neighbor, i + 1, in HN-detected double and triple resonance spectra. This leads to the assignment of a tri-peptide segment from the knowledge of the amino acid types of residues: i - 1, i and i + 1, thereby speeding up the sequential assignment process. The method has the advantage of being relatively inexpensive, applicable to H-2 labeled protein and can be coupled with cell-free synthesis and/or automated assignment approaches. A detailed survey involving unlabeling of different amino acid types individually or in pairs reveals that the proposed approach is also robust to misincorporation of N-14 at undesired sites. Taken together, this study represents the first application of selective unlabeling for sequence specific resonance assignments and opens up new avenues to using this methodology in protein structural studies.
Resumo:
Molecular Dynamics (MD) simulations provide an atomic level account of the molecular motions and have proven to be immensely useful in the investigation of the dynamical structure of proteins. Once an MD trajectory is obtained, specific interactions at the molecular level can be directly studied by setting up appropriate combinations of distance and angle monitors. However, if a study of the dynamical behavior of secondary structures in proteins becomes important, this approach can become unwieldy. We present herein a method to study the dynamical stability of secondary structures in proteins, based on a relatively simple analysis of backbone hydrogen bonds. The method was developed for studying the thermal unfolding of beta-lactamases, but can be extended to other systems and adapted to study relevant properties.
Resumo:
Proline residues in helices play an important role in the structure of proteins. The proline residue introduces a kink in the helix which varies from about 5-degrees to 50-degrees. The presence of other residues such as threonine or valine near the proline region can influence the flexibility exhibited by the kinked helix, which can have an important biological role. In the present paper, the constraint introduced by threonine and valine on a proline helix is investigated by molecular dynamics studies. The systems considered am (1) a poly-alanine helix with threonine-proline residues (TP) and (2) a poly-alanine helix with valine-threonine-proline residues (VTP), in the middle. Molecular dynamics simulations are carried out on these two systems for 500 ps. The results are analyzed in terms of structural transitions, bend-related parameters and sidechain orientations.
Resumo:
The complete amino-acid sequence of sheep liver cytosolic serine hydroxymethyltransferase was determined from an analysis of tryptic, chymotryptic, CNBr and hydroxylamine peptides. Each subunit of sheep liver serine hydroxymethyltransferase consisted of 483 amino-acid residues. A comparison of this sequence with 8 other serine hydroxymethyltransferases revealed that a possible gene duplication event could have occurred after the divergence of animals and fungi. This analysis also showed independent duplication of SHMT genes in Neurospora crassa. At the secondary structural level, all the serine hydroxymethyltransferases belong to the alpha/beta category of proteins. The predicted secondary structure of sheep liver serine hydroxymethyltransferase was similar to that of the observed structure of tryptophan synthase, another pyridoxal 5'-phosphate containing enzyme, suggesting that sheep liver serine hydroxymethyltransferase might have a similar pyridoxal 5'-phosphate binding domain. In addition, a conserved glycine rich region, G L Q G G P, was identified in all the serine hydroxymethyltransferases and could be important in pyridoxal 5'-phosphate binding. A comparison of the cytosolic serine hydroxymethyltransferases from rabbit and sheep liver with other proteins sequenced from both these sources showed that serine hydroxymethyltransferase was a highly conserved protein. It was slightly less conserved than cytochrome c but better conserved than myoglobin, both of which are well known evolutionary markers. C67 and C203 were specifically protected by pyridoxal 5'-phosphate against modification with [C-14]iodoacetic acid, while C247 and C261 were buried in the native serine hydroxymethyltransferase. However, the cysteines are not conserved among the various serine hydroxymethyltransferases. The exact role of the cysteines in the reaction catalyzed by serine hydroxymethyltransferase remains to be elucidated.
Resumo:
An attempt is made to draw a profile of adenosine triphosphate (ATP) and to project its many actions. The amazing versatility of its participation in a number of synthetic reactions lies in the oligophosphate structure. Many proteins that use ATP have conserved binding 'P-loop' but this gives no clue what makes it so special. The energy transducing reactions leading to synthesis of the terminal phosphodiester had at least three strategies. Of these, direct dehydration and transfer of inorganic phosphate using respiratory energy operate through mechano-coupling in a multisubunit protein. This tripartite, knob-stalk-base structure provides a novel mechanism of rotational catalysis and the tiniest molecular motor, All the reactions occur in concert with no sign of energized chemical intermediate. With the new knowledge on the crystal structure of F-1-ATPase, proton translocation needs a relook. An alternative perspective is emerging on energy being received and stored in polypeptide structure by breaking hydrogen bonds. Membrane serves the purpose of mobilizing the constituent proteins and also as a potential energy carrier of proteins with little loss of energy.
Resumo:
Methods for macromolecular structure determination (NMR and crystallography) are now being used to get structural information on partially folded and unfolded states of proteins. These techniques, in combination with proton hydrogen exchange studies are powerful tools to extract information on non-native states of proteins. This review discusses progress In this area of protein folding.
Resumo:
In this study an atmospheric glow discharge with a fluorocarbon gas as precursor was used to modify the surface of polydimethyl siloxane (PDMS -(CH3)(2)SiO](n)-). The variation in protein immobilizing capability of PDMS was studied for different times of exposure. It was observed that the concentration of proteins adsorbed on the surface varied in an irregular manner with treatment time. The fluorination results in the formation of a thin film of fluorocarbon on the PDMS surface. The AFM and XPS data suggest that the film cracks due to stress and regains its uniformity thereafter. This Stranski-Krastanov growth model of the film was due to the high growth rate offered by atmospheric glow discharge. (C) 2011 Elsevier B. V. All rights reserved.
Resumo:
Rv2118c belongs to the class of conserved hypothetical proteins from Mycobacterium tuberculosis H37Rv. The crystal structure of Rv2118c in complex with S-adenosyl-Image -methionine (AdoMet) has been determined at 1.98 Å resolution. The crystallographic asymmetric unit consists of a monomer, but symmetry-related subunits interact extensively, leading to a tetrameric structure. The structure of the monomer can be divided functionally into two domains: the larger catalytic C-terminal domain that binds the cofactor AdoMet and is involved in the transfer of methyl group from AdoMet to the substrate and a smaller N-terminal domain. The structure of the catalytic domain is very similar to that of other AdoMet-dependent methyltransferases. The N-terminal domain is primarily a β-structure with a fold not found in other methyltransferases of known structure. Database searches reveal a conserved family of Rv2118c-like proteins from various organisms. Multiple sequence alignments show several regions of high sequence similarity (motifs) in this family of proteins. Structure analysis and homology to yeast Gcd14p suggest that Rv2118c could be an RNA methyltransferase, but further studies are required to establish its functional role conclusively.
Resumo:
After initiation of transcription, a number of proteins participate during elongation and termination modifying the properties of the RNA polymerase (RNAP). Gre factors are one such group conserved across bacteria. They regulate transcription by projecting their N-terminal coiled-coil domain into the active center of RNAP through the secondary channel and stimulating hydrolysis of the newly synthesized RNA in backtracked elongation complexes. Rv1080c is a putative gre factor (MtbGre) in the genome of Mycobacterium tuberculosis. The protein enhanced the efficiency of promoter clearance by lowering abortive transcription and also rescued arrested and paused elongation complexes on the GC rich mycobacterial template. Although MtbGre is similar in domain organization and shares key residues for catalysis and RNAP interaction with the Gre factors of Escherichia coli, it could not complement an E. coli gre deficient strain. Moreover, MtbGre failed to rescue E. coli RNAP stalled elongation complexes, indicating the importance of specific protein-protein interactions for transcript cleavage. Decrease in the level of MtbGre reduced the bacterial survival by several fold indicating its essential role in mycobacteria. Another Gre homolog, Rv3788 was not functional in transcript cleavage activity indicating that a single Gre is sufficient for efficient transcription of the M. tuberculosis genome.
Resumo:
Background: Sensitive remote homology detection and accurate alignments especially in the midnight zone of sequence similarity are needed for better function annotation and structural modeling of proteins. An algorithm, AlignHUSH for HMM-HMM alignment has been developed which is capable of recognizing distantly related domain families The method uses structural information, in the form of predicted secondary structure probabilities, and hydrophobicity of amino acids to align HMMs of two sets of aligned sequences. The effect of using adjoining column(s) information has also been investigated and is found to increase the sensitivity of HMM-HMM alignments and remote homology detection. Results: We have assessed the performance of AlignHUSH using known evolutionary relationships available in SCOP. AlignHUSH performs better than the best HMM-HMM alignment methods and is observed to be even more sensitive at higher error rates. Accuracy of the alignments obtained using AlignHUSH has been assessed using the structure-based alignments available in BaliBASE. The alignment length and the alignment quality are found to be appropriate for homology modeling and function annotation. The alignment accuracy is found to be comparable to existing methods for profile-profile alignments. Conclusions: A new method to align HMMs has been developed and is shown to have better sensitivity at error rates of 10% and above when compared to other available programs. The proposed method could effectively aid obtaining clues to functions of proteins of yet unknown function. A web-server incorporating the AlignHUSH method is available at http://crick.mbu.iisc.ernet.in/similar to alignhush/