70 resultados para Machine de Boltzmann restreinte


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The classical Chapman-Enskog expansion is performed for the recently proposed finite-volume formulation of lattice Boltzmann equation (LBE) method D.V. Patil, K.N. Lakshmisha, Finite volume TVD formulation of lattice Boltzmann simulation on unstructured mesh, J. Comput. Phys. 228 (2009) 5262-5279]. First, a modified partial differential equation is derived from a numerical approximation of the discrete Boltzmann equation. Then, the multi-scale, small parameter expansion is followed to recover the continuity and the Navier-Stokes (NS) equations with additional error terms. The expression for apparent value of the kinematic viscosity is derived for finite-volume formulation under certain assumptions. The attenuation of a shear wave, Taylor-Green vortex flow and driven channel flow are studied to analyze the apparent viscosity relation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study investigates the application of support vector clustering (SVC) for the direct identification of coherent synchronous generators in large interconnected multi-machine power systems. The clustering is based on coherency measure, which indicates the degree of coherency between any pair of generators. The proposed SVC algorithm processes the coherency measure matrix that is formulated using the generator rotor measurements to cluster the coherent generators. The proposed approach is demonstrated on IEEE 10 generator 39-bus system and an equivalent 35 generators, 246-bus system of practical Indian southern grid. The effect of number of data samples and fault locations are also examined for determining the accuracy of the proposed approach. An extended comparison with other clustering techniques is also included, to show the effectiveness of the proposed approach in grouping the data into coherent groups of generators. This effectiveness of the coherent clusters obtained with the proposed approach is compared in terms of a set of clustering validity indicators and in terms of statistical assessment that is based on the coherency degree of a generator pair.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although many sparse recovery algorithms have been proposed recently in compressed sensing (CS), it is well known that the performance of any sparse recovery algorithm depends on many parameters like dimension of the sparse signal, level of sparsity, and measurement noise power. It has been observed that a satisfactory performance of the sparse recovery algorithms requires a minimum number of measurements. This minimum number is different for different algorithms. In many applications, the number of measurements is unlikely to meet this requirement and any scheme to improve performance with fewer measurements is of significant interest in CS. Empirically, it has also been observed that the performance of the sparse recovery algorithms also depends on the underlying statistical distribution of the nonzero elements of the signal, which may not be known a priori in practice. Interestingly, it can be observed that the performance degradation of the sparse recovery algorithms in these cases does not always imply a complete failure. In this paper, we study this scenario and show that by fusing the estimates of multiple sparse recovery algorithms, which work with different principles, we can improve the sparse signal recovery. We present the theoretical analysis to derive sufficient conditions for performance improvement of the proposed schemes. We demonstrate the advantage of the proposed methods through numerical simulations for both synthetic and real signals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Climate change impact assessment studies involve downscaling large-scale atmospheric predictor variables (LSAPVs) simulated by general circulation models (GCMs) to site-scale meteorological variables. This article presents a least-square support vector machine (LS-SVM)-based methodology for multi-site downscaling of maximum and minimum daily temperature series. The methodology involves (1) delineation of sites in the study area into clusters based on correlation structure of predictands, (2) downscaling LSAPVs to monthly time series of predictands at a representative site identified in each of the clusters, (3) translation of the downscaled information in each cluster from the representative site to that at other sites using LS-SVM inter-site regression relationships, and (4) disaggregation of the information at each site from monthly to daily time scale using k-nearest neighbour disaggregation methodology. Effectiveness of the methodology is demonstrated by application to data pertaining to four sites in the catchment of Beas river basin, India. Simulations of Canadian coupled global climate model (CGCM3.1/T63) for four IPCC SRES scenarios namely A1B, A2, B1 and COMMIT were downscaled to future projections of the predictands in the study area. Comparison of results with those based on recently proposed multivariate multiple linear regression (MMLR) based downscaling method and multi-site multivariate statistical downscaling (MMSD) method indicate that the proposed method is promising and it can be considered as a feasible choice in statistical downscaling studies. The performance of the method in downscaling daily minimum temperature was found to be better when compared with that in downscaling daily maximum temperature. Results indicate an increase in annual average maximum and minimum temperatures at all the sites for A1B, A2 and B1 scenarios. The projected increment is high for A2 scenario, and it is followed by that for A1B, B1 and COMMIT scenarios. Projections, in general, indicated an increase in mean monthly maximum and minimum temperatures during January to February and October to December.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multilevel inverters with dodecagonal (12-sided polygon) voltage space vector structure have advantages, such as complete elimination of fifth and seventh harmonics, reduction in electromagnetic interference, reduction in device voltage ratings, reduction of switching frequency, extension of linear modulation range, etc., making it a viable option for high-power medium-voltage drives. This paper proposes two power circuit topologies capable of generating multilevel dodecagonal voltage space vector structure with symmetric triangles (for the first time) with minimum number of dc-link power supplies and floating capacitor H-bridges. The first power topology is composed of two hybrid cascaded five-level inverters connected to either side of an open-end winding induction machine. Each inverter consists of a three-level neutral-point-clamped inverter, which is cascaded with an isolated H-bridge making it a five-level inverter. The second topology is for a normal induction motor. Both of these circuit topologies have inherent capacitor balancing for floating H-bridges for all modulation indexes, including transient operations. The proposed topologies do not require any precharging circuitry for startup. A simple pulsewidth modulation timing calculation method for space vector modulation is also presented in this paper. Due to the symmetric arrangement of congruent triangles within the voltage space vector structure, the timing computation requires only the sampled reference values and does not require any offline computation, lookup tables, or angle computation. Experimental results for steady-state operation and transient operation are also presented to validate the proposed concept.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Models of river flow time series are essential in efficient management of a river basin. It helps policy makers in developing efficient water utilization strategies to maximize the utility of scarce water resource. Time series analysis has been used extensively for modeling river flow data. The use of machine learning techniques such as support-vector regression and neural network models is gaining increasing popularity. In this paper we compare the performance of these techniques by applying it to a long-term time-series data of the inflows into the Krishnaraja Sagar reservoir (KRS) from three tributaries of the river Cauvery. In this study flow data over a period of 30 years from three different observation points established in upper Cauvery river sub-basin is analyzed to estimate their contribution to KRS. Specifically, ANN model uses a multi-layer feed forward network trained with a back-propagation algorithm and support vector regression with epsilon intensive-loss function is used. Auto-regressive moving average models are also applied to the same data. The performance of different techniques is compared using performance metrics such as root mean squared error (RMSE), correlation, normalized root mean squared error (NRMSE) and Nash-Sutcliffe Efficiency (NSE).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This letter presents an accurate steady-state phasor model for a doubly fed induction machine. The drawback of existing steady-state phasor model is discussed. In particular, the inconsistency of existing equivalent model with respect to reactive power flows when operated at supersynchronous speeds is highlighted. Relevant mathematical basis for the proposed model is presented and its validity is illustrated on a 2-MW doubly fed induction machine.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Lattice-Boltzmann method (LBM), a promising new particle-based simulation technique for complex and multiscale fluid flows, has seen tremendous adoption in recent years in computational fluid dynamics. Even with a state-of-the-art LBM solver such as Palabos, a user has to still manually write the program using library-supplied primitives. We propose an automated code generator for a class of LBM computations with the objective to achieve high performance on modern architectures. Few studies have looked at time tiling for LBM codes. We exploit a key similarity between stencils and LBM to enable polyhedral optimizations and in turn time tiling for LBM. We also characterize the performance of LBM with the Roofline performance model. Experimental results for standard LBM simulations like Lid Driven Cavity, Flow Past Cylinder, and Poiseuille Flow show that our scheme consistently outperforms Palabos-on average by up to 3x while running on 16 cores of an Intel Xeon (Sandybridge). We also obtain an improvement of 2.47x on the SPEC LBM benchmark.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In a practical situation, it is difficult to model exact contact conditions clue to challenges involved in the estimation of contact forces, and relative displacements between the contacting bodies. Sliding and seizure conditions were simulated on first-of-a-kind displacement controlled system. Self-mated stainless steels have been investigated in detail. Categorization of contact conditions prevailing at the contact interface has been carried out based on the variation of coefficient of friction with number of cycles, and three-dimensional fretting loops. Surface and subsurface micro-cracks have been observed, and their characteristic shows strong dependence on loading conditions. Existence of shear bands in the subsurface region has been observed for high strain and low strain rate loading conditions. Studies also include the influence of initial surface roughness on the damage under two extreme contact conditions. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This letter presents an alternate proof for the steady-state equivalent circuit of a doubly fed induction machine operating at supersynchronous speeds. The spatial orientation of rotating magnetic fields is used to validate the conjugation of rotor side quantities arising in supersynchronous mode. The equivalent circuit is further validated using dynamic simulations of a stand-alone machine.